Автор: Пользователь скрыл имя, 28 Февраля 2012 в 15:23, реферат
Химический реактор – основной элемент аппаратурного оформления любой технологической схемы. В нем протекают как химические, так и физические процессы; вместе с тем при его расчете и конструировании необходимо учитывать механические факторы. Поэтому искусство проектирования, конструирования и экономичного управления реактором сводится к синтезу принципов химии, физики, механики и экономики.
Введение 3
1 Химические реакторы 5
1.1 Классификация химических реакторов и режимов их работы 5
2 Реактор идеального смешения непрерывного действия 12
3 Реактор идеального вытеснения 15
4 Реакторы идеального смешения периодического действия 18
5 Последовательные и параллельные схемы реакторов 20
5.1 Каскад реакторов 20
5.2 Графический метод расчета 24
5.3 Аналитический метод расчета 26
6 Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения 28
Выводы 31
Список использованных источников
т.е. величина τ как определенный интеграл выражается геометрической площадью, ограниченной прямыми СА и СА 0, графиком функции и осью абсцисс. Из рисунка видно, что площади, соответствующие времени пребывания в реакторе вытеснения, заметно меньше площади, соответствующей времени в реакторе смешения для достижения одного и того же результата. Следовательно, при равном объемном расходе реактор идеального вытеснения должен иметь меньший объем. Таким образом, реакторы идеального вытеснения характеризуются более высокой производительностью, чем реакторы идеального смешения.
Другим важным критерием эффективности реакторов является селективность процесса. Рассмотрев в этой связи ряд случаев, определяющих выбор в пользу реактора смешения или вытеснения.
1. Система параллельных реакций (основной и побочной), когда порядок побочной реакции по реагенту выше, чем основной
Рассмотрим кинетические зависимости для реагента А в реакторах смешения и вытеснения. Из этих зависимостей видно, что действующая концентраций в реакторе смешения СА будет существенно ниже по сравнению со средней концентрацией А в реакторе вытеснения.
Это означает, что побочная реакция буде более успешно конкурировать с основной в реакторе смешения, т.е. селективность в этом реакторе буде ниже. Поэтому, если побочная реакция имеет более высокий порядок по реагенту, чем основная, то более выгодно для достижения более высокой селективности работать в реакторе смешения.
2. Система параллельных реакций (основной и побочной), когда порядок побочной реакции по реагенту ниже, чем основной, n<m. В этом случае большее значение эффективной концентрации в реакторе вытеснения обеспечит более успешную конкуренцию основной реакции по сравнению с побочной. В этом случае более высокая селективность будет достигнута в реакторе вытеснения.
3. Система параллельных реакций (основной и побочной), когда порядки основной и побочных реакций по реагенту одинаковы, m=n.
В этом случае выход целевого продукта не зависит от типа реактора.
4. Система последовательных реакций
в которых В- основной продукт, С – побочный.
Очевидно, что в случае реактора смешения концентрация основного продукта в реакционной массе будет выше средней концентрации В в реакторе вытеснения. По этой причине в реакторе смешения скорость побочной реакции будет существенно выше, а селективность – ниже по сравнению с реактором вытеснения. Поэтому для достижения высоких селективностей последовательных реакций более выгодным является реактор вытеснения.
Таким образом, в ряде случаев для достижения высокого выхода целевого продукта эффективнее реактор идеального вытеснения, а иногда – реактор идеального смешения.
При выборе в пользу того или иного типа реактора необходимо также учитывать чисто эксплуатационные реакторы. К ним следует отнести большое гидравлическое сопротивление трубчатых реакторов, трудность чистки таких аппаратов. Реакторы смешения с интенсивным перемешиванием проще по конструкции и обеспечивают более эффективный подвод или съем тепла. В то же время они обладают низкой производительностью. Чтобы использовать преимущества реакторов смешения и вытеснения, используют каскад реакторов идеального смешения путем последовательного включения в технологическую нитку нескольких реакторов[4].
Выводы
При сравнении реактора полного смешения и идеального вытеснения пришли к выводу, что по технологическим и экономическим параметрам более целесообразным является применение реактора полного смешения (больше скорость и меньше время пребывания смеси в реакторе, следовательно, меньше объем реактора VP=V0*преб).
При увеличении начальной температуры степень превращения уменьшается; по уравнению материального баланса Х прямо пропорциональна скорости реакции, которая с увеличением температуры (с увеличением начальной температуры возрастает общая температуры смеси) сначала возрастает до значения Umax (константа скорости реакции растет быстрее уменьшения движущей силы), затем уменьшается (const скорости растет медленнее уменьшения ДС). При большей начальной температуре быстрее достигается состояние равновесия (больше скорость, меньше время пребывания), поэтому степень превращения меньше.
При увеличении давления степень превращения возрастает с течением времени, так как реакция идет с уменьшением объема реакционной смеси, следовательно, повышение давления приводит к увеличению ДС реакции и скорости, которая прямо пропорциональна степени превращения по уравнению материального баланса. Также возрастают парциальные давления реагентов [4].
Список использованных источников
1 Власов Е.А.Основы химической технологии. Курс лекций, 2006.
2 Расчеты химико-технологических процессов: Учебное пособие для вузов/Туболкин А. Ф., Тумаркина Е.С, Тарат Э. Я. и др.;под ред. И.П. Мухленова – 2-е изд.,перераб. и доп. – Л.: Химия, 1982.-248 с.,ил
3 Общая химическая технология: Учеб. для вузов/ А. М. Кутепова, Т. И. Бондарева, М.Г. Беренгартен. – 3-е изд., перераб. – М.:ИКЦ «Академкнига», 2003.-528 с.
4 Дытнерский Ю.И. Основные процессы и аппараты химической технологии: Пособие по проектированию. - М.: Химия, 1991 г. - 496с.
32