Автор: Пользователь скрыл имя, 28 Декабря 2011 в 19:20, реферат
Дмитрий Иванович Менделеев (1834-1907) — российский химик, разносторонний ученый, педагог. Открыл (1869) периодический закон химических элементов — один из основных законов естествознания.
Дмитрий Менделеев оставил свыше 500 печатных трудов, среди которых классические «Основы химии» (ч. 1-2, 1869-71, 13 изд., 1947) — первое стройное изложение неорганической химии. Автор фундаментальных исследований по химии, химической технологии, физике, метрологии, воздухоплаванию, метеорологии, сельскому хозяйству, экономике, народному просвещению и др., тесно связанных с потребностями развития производительных сил России.
Введение
Д.И.Менделеев - ученый с мировыми заслугами
Вклад Д.И.Менделеева в области химии:
Периодическая система химических элементов
История создания периодической системы;
Периодический закон;
Предсказание существования неизвестных элементов: 22 Sc, Ga, Ge.
Участие великого химика в промышленности
Заключение
Список литературы
Периодическая система химических элементов.
Исследуя
изменение химических свойств элементов
в зависимости от величины их относительной
атомной массы (атомного веса), Д. И.
Менделеев в 1869 г. открыл закон периодичности
этих свойств: «Свойства элементов,
а потому и свойства образуемых ими
простых и сложных тел стоят
в периодической зависимости
от атомных весов элементов». Физическая
основа периодического закона была установлена
в 1922 г. Н. Бором. Поскольку химические
свойства обусловлены строением
электронных оболочек атома, периодическая
система Менделеева - это естественная
классификация элементов по электронным
структурам их атомов. Простейшая основа
такой классификации - число электронов
в нейтральном атоме, которое
равно заряду ядра (см приложение1).
Но при образовании химической связи
электроны могут
Период - горизонтальный ряд, имеющий одинаковое число электронных слоев, номер периода совпадает со значением главного квантового числа n внешнего уровня (слоя); таких периодов в периодической системе семь. Второй и последующие периоды начинаются щелочным элементом (ns1) и заканчивается благородным газом (ns2np6).По вертикали периодическая система подразделяется на восемь групп, которые делятся на главные - А, состоящие из s- и p-элементов, и побочные - B-подгруппы, содержащие d-элементы. Подгруппа III B, кроме d-элементов, содержит по 14 4f- и 5f-элементов (4f- и 5f-семейства). Главные подгруппы содержат на внешнем электронном слое одинаковое число электронов, которое равно номеру группы. В главных подгруппах валентные электроны (электроны, способные образовывать химические связи) расположены на s- и p-орбиталях внешнего энергетического уровня, в побочных - на s-орбиталях внешнего и d-орбиталях предвнешнего слоя. Для f-элементов валентными являются (n - 2)f- (n - 1)d- и ns-электроны. Сходство элементов внутри каждой группы - наиболее важная закономерность в периодической системе. Следует, кроме того, отметить такую закономерность, как диагональное сходство у пар элементов Li и Mg, Be и Al, B и Si и др. Эта закономерность обусловлена тенденцией смены свойств по вертикали (в группах) и их изменением по горизонтали (в периодах). Все сказанное выше подтверждает, что структура электронной оболочки атомов элемента изменяется периодически с ростом порядкового номера элемента. С другой стороны, свойства определяются строением электронной оболочки и, следовательно, находятся в периодической зависимости от заряда ядра атома. Далее рассматриваются некоторые периодические свойства элементов. (см. приложение 3)
Первый период (n = 1, l = 0) состоит из двух элементов H (1s1) и He (1s2).
Во втором периоде (n = 2, l = 0, 1) заполняются s- и p-орбитали от Li до Ne. Элементы называются соответственно s- и p-элементами.
В третьем периоде появляются пять d-орбиталей (n = 3, l = 0, 1, 2). Пока они вакантны, и третий период, как и второй, содержит восемь p-элементов элементов от Na до Ar.
Следующие за аргоном калий и кальций имеют на внешнем уровне 4s-электроны (четвертый период). Появление 4s-электронов при наличии свободных 3d-орбиталей обусловлено экранированием ядра плотным 3s23p6-электронным слоем. В связи с отталкиванием от этого слоя внешних электронов для калия и кальция реализуются [Ar]4s1- и [Ar]4s2-состояния. Сходство K и Ca с Na и Mg соответственно, кроме чисто «химического» обоснования, подтверждается также электронными спектрами. При дальнейшем увеличении заряда у следующего за кальцием скандия 3d-состояние становится энергетически более выгодным, чем 4p, поэтому и заселяется 3d-орбиталь (см. приложение 3). Из анализа зависимости энергии электрона от порядкового номера элемента В. М. Клечковский сформулировал правило, согласно которому энергия атомных орбиталей возрастает по мере увеличения суммы (n + l). При равенстве сумм сначала заполняется уровень с меньшим n и большим l, а потом с большим n и меньшим l. Так у K и Ca заполняется 4s-орбиталь (4 + 0 = 4), а потом у Sc заполняется 3d-орбиталь (3 + 2 = 5).
Приведенные рассуждения подтверждаются экспериментальными данными об изменении энергии s-, p-, d- и f-орбиталей в зависимости от порядкового номера элемента. Как следует из рис. 1.3, значения энергии различных состояний зависит от заряда ядра Z, и чем больше Z, тем меньше различаются эти состояния по энергиям. Характер этого различия таков, что кривые, выражающие изменение энергии, пересекаются. Так для элементов K и Ca (Z = 19 и 20) энергия 3d-орбиталей выше, чем 4p, а для элементов с Z ? 21 энергия 3d-орбиталей ниже, чем 4p. Начиная со скандия (Z = 21) заполняется 3d-орбиталь, а во внешнем слое остаются 4s-электроны. Поэтому в четвертом периоде в ряду от Sc до Zn все десять 3d-элементов - металлы с низшей степенью окисления, как правило, 2, за счет внешних 4s-электронов. Общая электронная формула этих элементов - 3d1-104s1-2. Для хрома и меди наблюдается проскок (или провал) электрона на d-уровень: Cr - 3d54s1, Cu - 3d104s1. Такой проскок с ns- на (n - 1)d-уровень наблюдается также у Mo, Ag, Au, Pt и у других элементов и объясняется близостью энергий ns- и (n - 1)d-уровней и стабильностью наполовину и полностью заполненных уровней.
Образование катионов d-элементов связано с потерей, прежде всего внесших ns- и только затем (n - 1)d-электронов. (см приложение 4)
Дальше в четвертом периоде после десяти d-элементов появляются p-элементы от Ga (4s24p1) до Kr (4s24p6).
Пятый период повторяет четвертый - в нем также 18 элементов, и 4d-элементы, как и 3d образуют вставную декаду (4d 1-105s 0-2).
В шестом периоде после лантана (5d16s2) - аналога скандия и иттрия следуют 14 4f-элементов - лантаноидов. Свойства этих элементов очень близки, поскольку идет заполнение глубоколежащего (n - 2)f-подуровня. Общая формула лантаноидов 4f 2-145d 0-16s 2. (см. приложение 5)
После 4f-элементов заполняются 5d- и 6p-орбитали.
Седьмой период отчасти повторяет шестой. 5f-элементы называются актиноидами. Их общая формула 5f 2-146d 0-17s2. Далее следуют еще 6 искусственно полученных 6d-элементов незавершенного седьмого периода.
Периодическая
система элементов.
История создания Периодической системы.
Зимой
1867-68 года Менделеев начал писать
учебник "Основы химии" и сразу
столкнулся с трудностями систематизации
фактического материала. К середине
февраля 1869 года, обдумывая структуру
учебника, он постепенно пришел к выводу,
что свойства простых веществ (а
это есть форма существования
химических элементов в свободном
состоянии) и атомные массы элементов
связывает некая
Менделеев многого не знал о попытках его предшественников расположить химические элементы по возрастанию их атомных масс и о возникающих при этом казусах. Например, он не имел почти никакой информации о работах Шанкуртуа, Ньюлендса и Мейера.
Решающий этап его раздумий наступил 1 марта 1869 года (14 февраля по старому стилю). Днем раньше Менделеев написал прошение об отпуске на десять дней для обследования артельных сыроварен в Тверской губернии: он получил письмо с рекомендациями по изучению производства сыра от А. И. Ходнева - одного из руководителей Вольного экономического общества.
В
Петербурге в этот день было пасмурно
и морозно. Под ветром поскрипывали
деревья в университетском
За завтраком Менделееву пришла неожиданная мысль: сопоставить близкие атомные массы различных химических элементов и их химические свойства. Недолго думая, на обратной стороне письма Ходнева он записал символы хлора Cl и калия K с довольно близкими атомными массами, равными соответственно 35,5 и 39 (разница всего в 3,5 единицы). На том же письме Менделеев набросал символы других элементов, отыскивая среди них подобные "парадоксальные" пары: фтор F и натрий Na, бром Br и рубидий Rb, иод I и цезий Cs, для которых различие масс возрастает с 4,0 до 5,0, а потом и до 6,0. Менделеев тогда не мог знать, что "неопределенная зона" между явными неметаллами и металлами содержит элементы - благородные газы, открытие которых в дальнейшем существенно видоизменит Периодическую систему.
После
завтрака Менделеев закрылся в своем
кабинете. Он достал из конторки пачку
визитных карточек и стал на их обратной
стороне писать символы элементов
и их главные химические свойства.
Через некоторое время
Постепенно Дмитрий Иванович пришел к окончательному выводу, что элементы, расположенные по возрастанию их атомных масс, выказывают явную периодичность физических и химических свойств. В течение всего дня Менделеев работал над системой элементов, отрываясь ненадолго, чтобы поиграть с дочерью Ольгой, пообедать и поужинать.
Вечером 1 марта 1869 года он набело переписал составленную им таблицу и под названием "Опыт системы элементов, основанной на их атомном весе и химическом сходстве" послал ее в типографию, сделав пометки для наборщиков и поставив дату "17 февраля 1869 года" (это по старому стилю).
Так
был открыт Периодический закон,
современная формулировка которого
такова: Свойства простых веществ, а
также формы и свойства соединений
элементов находятся в
Отпечатанные листки с таблицей элементов Менделеев разослал многим отечественным и зарубежным химикам и только после этого выехал из Петербурга для обследования сыроварен.
До
отъезда он еще успел передать
Н. А. Меншуткину, химику-органику и
будущему историку химии, рукопись статьи
"Соотношение свойств с
18
марта 1869 года Меншуткин, который
был в то время
.
Не все элементы Менделеев
разместил в порядке