Автор: Пользователь скрыл имя, 09 Ноября 2012 в 16:26, курс лекций
Методы агрохимических исследований - вегетационный метод, полевые опыты.
Плодородие почвы – это ее способность удовлетворять потребность растений в элементах питания, влаге и воздухе, а также обеспечивать условия для их нормальной жизнедеятельности. Высокое плодородие почвы обеспечивает оптимальное питание растений, формирование высокого урожая и полноценной по качеству продукции для питания человека и кормов для животных.
Аспарагиновая к-та Пировиноградная к-та
CH3-CHNH2-COOH + CООH-CH2-CO-COOH
Аланин
2CH3-CO-COOH + СО(NH2)2 ® CH3-CHNH2-COOH
Пировиноградная Мочевина Аланин
Связывание аммиака двухосновных кислотами
COOH + NH3 ® COO-NH4
| |
СООН СООН
Аминокислоты
В настоящее время известно
около 90 аминокислот, 70 из них находятся
в растениях в свободном
В растениях происходит не только синтез белков, но и их распад через аминокислоты до аммиака.
Азотный обмен в растениях
В молодых растениях, а
также в молодых органах
Если же органических кислот нет, например при отсутствии фотосинтеза, то тормозится и образование аминокислот, и связывание ими аммиака. В этих случаях аммиак может накапливаться в количествах, вызывающих отравление растений.
Эти сложнейшие превращения азотистых веществ в растениях одним из первых экспериментально определил Д.Н. Прянишников: ...«аммиак есть альфа и омега азотистого обмена веществ в растениях», т.е. с аммиака начинается и им заканчивается обмен азотистых веществ в любых растениях. Это положение имеет важное теоретическое и практическое значение.
Методом меченых атомов было показано, что процесс синтеза аминокислот за счет аммиачного азота происходит довольно быстро: в течение 15–20 мин после введения (NH4)2SO4, меченного 15N, в корнях растений находят аминокислоты с 15N.
Нитраты могут накапливаться в растениях. Переход нитратов в аммиак совершается по мере использования его на синтез аминокислот. Нет синтеза – нет и образования аммиака из нитратов. Нитраты – лучшая форма питания растений в молодом возрасте, когда фотосинтетическая активность невелика и не образуются в достаточном количестве углеводы и органические кислоты.
Для культур, в которых содержится достаточное количество углеводов (например, клубни картофеля), аммиачные и нитратные формы азота в начале роста растений практически равноценны. Для культур, в семенах которых углеводов содержится мало (например, сахарная свекла, лен, злаковые травы и хлебные злаки), нитратные формы азота имеют преимущество перед аммиачными. Источники азота по-разному влияют на направленность физиолого-биохимических процессов в растениях. При аммиачном питании увеличивается восстановительная способность растительной клетки, что приводит к образованию восстановленных органических соединений (масла, жиры). При нитратном источнике азота преобладает окислительная способность клеточного сока, ведущая к усилению процессов образования органических кислот. Для нитратного питания важно обеспечить растение фосфором и молибденом. Недостаток молибдена задерживает восстановление нитратного азота до аммиака, что приводит к накоплению нитратов в растениях в свободном состоянии.
Питание растений ФОСФОРОМ
Ротамстедская опытная станция (Англия) - Sir John Bennet Lawes (1814-1900). В 1842 г. Дж. Лооз получил патент на производство суперфосфата. В год перерабатывали 40 тыс. тонн костей, но этого не хватало, начали исп. фосфориты. В это время на базе бурого угля начинается производство удобрений, в т.ч. калийные.
Первый опыт с суперфосфатом – 1843 г., бессменно выращивали пшеницу (+NPK) и изучали н влияние на нее этих эл-тов.
Глобальный цикл фосфора
[схема]
Круговорот фосфора в агроценозе
Фосфор удобрений
Минерализация орг. соед. фосфора
Мин. биодоступные
соед. фосфора
Цикл фосфора в агроценозе
Вынос с урожаем (5-40) О.В. почвы (15-600) + Фосфор мин. части почвы (80-2000)
Поглощ. растениями (5-50)
Соединения фосфора в растениях
- Нуклеиновые кислоты.
- АТФ.
- Фитин – производное циклического соединения шестиатомного спирта инозита и является кальциево-магниевой солью инозит-фосфорной кислоты. Это запасное вещество. Фосфор фитина используется при прорастании развивающимся зародышем.
- Фосфопротеиды – соединения белковых веществ с фосфорной кислотой, которые катализируют течение биохимических реакций.
- Фосфатиды
(или фосфолипиды) – сложные
эфиры глицерина,
- Сахарофосфаты
– фосфорные эфиры сахаров.
Они играют важную роль в
процессах фотосинтеза,
Потребление фосфора растениями из почвы – большая проблема для растений, поскольку концентрация фосфора в почвенном растворе низка – порядка 10 милли Моль/л.
Форма, в которой фосфор находится в почвенном растворе зависит от рН. Ниже рН 6,0 большая часть фосфора находится в почве в виде H2PO4-, и максимальное поглощение фосфора происходит в интервале рН – 5-6.
Фосфор не может поступать в клетку в виде простого иона H2PO4-, поскольку это вызовет деполяризацию мембраны и сильный сдвиг рН, поэтому транспорт происходит совместно с катионом – Н+.
Через эктомикоризу (корни сосны), гифы, везикулярно-арбускулярной микоризы (ВАМ, ассоциация, в которой Zygomycete fungi в клетках корня высшего растения образуют арбускулы, гифы, везикулы).
Потребление фосфора растениями меняется со временем.
При недостатке Р – растения отстают в развитии, но не у всех есть визуальные признаки недостатка Р. Листовая диагностики (за рубежом) – анализ 5 верхних листов.
Подкормка растений Р – только в почву.
Кукуруза – пурпурные листья. Но – каротины, антоцианы, хлорофилл. Сахара могут идти на синтез антоцианов.
Цитрусовые – менее сладкие при недостатке Р, толстая кожура, растрескивание в центре.
Виноград – бурые, пожелтевшие листья.
Помидоры – низ листьев бурый.
Опосредованное питание Р через повышение температуры (понижение т.; затопление – уменьшение Р в почве).
Питание растений КАЛИЕМ
Минеральные удобрения делают из руд – сильвинита. Месторождения – Пермская обл., Соликамск. Также есть месторождения сульфатов и хлоридов. Нитраты – искусственные.
Цикл калия
Урожай Пожнивные остатки Орг. удобрения
Мин. удобрения
Поглощение растениями
ПР (К+) К минералов Обменный К
Вымвание
Группы соединений калия в почве
- 1. Калий различных минералов почвы, алюмосиликатов.
В этой форме содержится наибольшее количество калия. Больше его в ортоклазе, меньше – в мусковите, биотите, глауконите, нефелине и лейците. Эта форма калия труднодоступна растениям. В 1947 г. советскими учеными были выделены из почвы бактерии, названные силикатными, способные разлагать ортоклаз. Более доступен растениям калий мусковита, биотита и нефелина.
2. Калий почвенных коллоидов.
Эта форма – главный источник калийного питания растений.
В почве его может быть 5–30 мг/100 г. Количество его в почве в процентах от валового содержания зависит от типа и подтипа почвы, особенно ее гранулометрического состава. Например, на супесчаных почвах эта форма калия составляет лишь 0,8%, на суглинистых – 1,5, а на черноземах и сероземах – 1–3%.
3. Водорастворимый калий.
Содержание этой формы элемента составляет 1/5–1/10 часть от количества К2О, находящегося в почве обменном состоянии. Водорастворимый калий наиболее доступен для питания растений. Появляется он в почве вследствие химического и биологического воздействия на почвенные минералы.
4. Калий, входящий в состав плазмы микроорганизмов и органические остатки.
В дерново-подзолистой почве количество его достигает 40 кг К2О на на 1 га. В доступную форму этот калий переходит лишь после отмирания микробов. Калий содержится также в растительных, животных, корневых и пожнивных остатках, навозе и других органических веществах, попадающих в почву. После их разложения он становится доступным растениям.
5. Калий, фиксированный почвой.
Фиксация калия в межпакетных пространствах алюмосиликатов активно идет при переменном смачивании и подсушивании почвы. Почва тяжелого гранулометрического состава, содержащая большое количество тонкодисперсных фракций, отличается повышенной фиксацией калия. Особенно активно калий фиксируется при наличии в почве глинистых минералов группы монтмориллонитов и гидрослюд, которым свойственна внутрикристаллическая адсорбция катионов.
Фиксация калия почвой
Наиболее интенсивно
калий фиксируется в солонцах.
Черноземы фиксируют калий
Применение навоза и известкование кислых почв закрепление калия в необменной форме.
Внесение калийных
удобрений снижает фиксацию калия
почвой, так как фиксирующая
Фиксация одного из этих элементов предотвращает и даже исключает фиксацию другого.
Фиксация калия почвой резко снижает коэффициент использования его из вносимых удобрений. Например, на маршевых (наносных) почвах Голландии фиксируется 21–59% вносимого на протяжении многих лет калия. В Канаде вследствие фиксации калия почвой растения использовали лишь 25–48% этого элемента, вносимого с минеральными удобрениями.
Поступление К в растения – через ЦПМ, задействовано ~20 белков. K : Na = 1 : 1 у живых орг., у растений – в основном К.
Роль калия в растении
Принимает активное участие в фотосинтезе: поддерживает тургор устьица; влияет на отток сахаров. Принимает активное участие в синтезе белка; активирует ферменты, деятельность АТФ, осуществляет приток ассимилянтов. Активирует процессы дыхания, а следовательно и образование АТФ. Обеспечивает транспорт воды, питательных элементов и ассимилянтов (глюкозы, фруктозы, сахаров) в растении.
К не входит в состав орг. в-в. Он адсорбируется почвенными коллоидами. В его присутствии дольше живут белки.
Влияние калия на урожай растений