Автор: Пользователь скрыл имя, 17 Января 2011 в 16:35, курсовая работа
Цель данной работы заключается в построении прогноза по статистическим данным индустрии гостеприимства собранным за несколько предыдущих лет и анализ прогноза на будущий период.
Задачи данной работы могут быть сформулированы следующим образом: раскрытие понятия о временных рядах и существующих в индустрии гостеприимства методах построения прогнозов; приведение конкретного примера с помощью программы Statgraphics Plus - анализ данных по ежемесячной загрузке гостиниц Северной Ирландии, выявление трендов и моделей сезонности, анализ случайности; построение прогноза с помощью функции автоматическое прогнозирование и анализ полученных данных с их дальнейшей трактовкой и выработкой конкретных рекомендаций и выводов по данной ситуации.
Введение…………………………………………………………….……………3
I. Теоретическое обоснование прогнозирования в индустрии гостеприимства и туризма
1.Сущность и методы прогнозирования…………………………….…….….5
2.Понятие временных рядов и основные этапы их анализа……………....…7
3.Общая характеристика STATGRAPHICS и его особенности………….....10
II. Анализ временных рядов в STATGRAPHICS…………………………..12
III. Автоматическое прогнозирование временных рядов………………...22
Заключение………………………………………………………………….…..31
Список использованной литературы………………………………………..32
Приложения………………………………………………………………….….33
22 -0,0574692 0,120246 -0,235678 0,235678
23 0,0285018 0,120572 -0,236318 0,236318
24
0,0601561 0,120653
-0,236475 0,236475
The StatAdvisor
---------------
This table shows the estimated autocorrelations between the
residuals at various lags. The lag k autocorrelation coefficient
measures the correlation between the residuals at time t and time t-k.
Also shown are 95,0% probability limits around 0.0. If the
probability limits at a particular lag do not contain the estimated
coefficient, there is a statistically significant correlation at that
lag at the 95,0% confidence level. In this case, none of the 24
autocorrelations coefficients are statistically significant, implying
that the time series may well be completely random (white noise). You
can plot the autocorrelation coefficients by selecting Residual
Autocorrelation Function from
the list of Graphical Options.
Periodogram for residuals
Data variable: Occupancy rate
Model: ARIMA(3,0,2)x(3,0,2)12 with constant
Frequency Period Ordinate Sum Periodogram
------------------------------
0,0
0,0119048 84,0 3,77987 3,77987 0,0188811
0,0238095 42,0 5,47069 9,25056 0,0462081
0,0357143 28,0 2,48865 11,7392 0,0586393
0,047619 21,0 5,3781 17,1173 0,0855039
0,0595238 16,8 6,51659 23,6339 0,118055
0,0714286 14,0 5,87847 29,5124 0,147419
0,0833333 12,0 5,36404 34,8764 0,174214
0,0952381 10,5 14,723 49,5995 0,247758
0,107143 9,33333 0,288574 49,888 0,249199
0,119048 8,4 3,7121 53,6001 0,267742
0,130952 7,63636 5,94088 59,541 0,297417
0,142857 7,0 3,11662 62,6576 0,312985
0,154762 6,46154 14,5929 77,2505 0,385879
0,166667 6,0 2,35442 79,6049 0,39764
0,178571 5,6 1,41688 81,0218 0,404717
0,190476 5,25 2,06301 83,0848 0,415023
0,202381 4,94118 13,9485 97,0333 0,484698
0,214286 4,66667 0,540237 97,5735 0,487396
0,22619 4,42105 0,398674 97,9722 0,489388
0,238095 4,2 0,5232 98,4954 0,492001
0,25 4,0 5,5666 104,062 0,519807
0,261905 3,81818 11,2391 115,301 0,575948
0,27381 3,65217 1,30725 116,608 0,582478
0,285714 3,5 3,97918 120,588 0,602355
0,297619 3,36 5,16561 125,753 0,628158
0,309524 3,23077 6,27203 132,025 0,659488
0,321429 3,11111 3,30586 135,331 0,676001
0,333333 3,0 0,653559 135,985 0,679266
0,345238 2,89655 7,57787 143,562 0,717119
0,357143 2,8 5,59333 149,156 0,745058
0,369048 2,70968 2,87681 152,033 0,759429
0,380952 2,625 8,00965 160,042 0,799438
0,392857 2,54545 0,456361 160,499 0,801718
0,404762 2,47059 7,37219 167,871 0,838543
0,416667 2,4 0,77842 168,649 0,842431
0,428571 2,33333 8,552 177,201 0,88515
0,440476 2,27027 3,93841 181,14 0,904823
0,452381 2,21053 6,49727 187,637 0,937278
0,464286 2,15385 1,73383 189,371 0,945939
0,47619 2,1 5,05297 194,424 0,971179
0,488095 2,04878 4,82504 199,249 0,995281
0,5
2,0
0,944683 200,193
1,0
The StatAdvisor
---------------
This table shows the periodogram ordinates for the residuals. It
is often used to identify cycles of fixed frequency in the data. The
periodogram is constructed by fitting a series of sine functions at
each of 43 frequencies. The ordinates are equal to the squared
amplitudes of the sine functions. The periodogram can be thought of
as an analysis of variance by frequency, since the sum of the
ordinates equals the total corrected sum of squares in an ANOVA table.
You can plot the periodogram ordinates by selecting Periodogram from
the list of Graphical Options.
Tests for Randomness of residuals
Data variable: Occupancy rate
Model: ARIMA(3,0,2)x(3,0,2)12 with constant
Runs above and below median
---------------------------
Median = 0,27267
Number of runs above and below median = 43
Expected number of runs = 43,0
Large sample test statistic z = -0,109772
P-value
= 1,08742
Runs up and down
---------------------------
Number of runs up and down = 56
Expected number of runs = 55,6667
Large sample test statistic z = 0,0
P-value
= 1,0
Box-Pierce Test
---------------
Test based on first 24 autocorrelations
Large sample test statistic = 9,66127
P-value
= 0,786506
The StatAdvisor
---------------
Three tests have been run to determine whether or not the residuals
form a random sequence of numbers. A sequence of random numbers is
often called white noise, since it contains equal contributions at
many frequencies. The first test counts the number of times the
sequence was above or below the median. The number of such runs
equals 43, as compared to an expected value of 43,0 if the sequence
were random. Since the P-value for this test is greater than or equal
to 0.10, we cannot reject the hypothesis that the residuals are random
at the 90% or higher confidence level. The second test counts the
number of times the sequence rose or fell. The number of such runs
equals 56, as compared to an expected value of 55,6667 if the sequence
were random. Since the P-value for this test is greater than or equal
to 0.10, we cannot reject the hypothesis that the series is random at
the 90% or higher confidence level. The third test is based on the
sum of squares of the first 24 autocorrelation coefficients. Since
the P-value for this test is greater than or equal to 0.10, we cannot
reject the hypothesis that the series is random at the 90% or higher
confidence level.
Средняя загрузка гостиниц Северной Ирландии за 1997—2004 гг.
(%)
Месяц | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
Январь | 29 | 31 | 30 | 28 | 30 | 31 | 31 | 37 |
Февраль | 36 | 39 | 35 | 36 | 38 | 39 | 40 | 45 |
Март | 38 | 38 | 37 | 37 | 38 | 40 | 41 | 46 |
Апрель | 39 | 40 | 41 | 45 | 39 | 42 | 45 | 55 |
Май | 45 | 46 | 47 | 50 | 46 | 50 | 51 | 55 |
Июнь | 49 | 45 | 52 | 52 | 53 | 51 | 56 | 60 |
Июль | 40 | 43 | 48 | 46 | 45 | 46 | 50 | 59 |
Август | 55 | 52 | 54 | 52 | 55 | 52 | 60 | 62 |
Сентябрь | 53 | 49 | 54 | 51 | 50 | 50 | 57 | 62 |
Октябрь | 47 | 42 | 46 | 41 | 43 | 43 | 50 | — |
Ноябрь | 42 | 38 | 42 | 38 | 39 | 38 | 44 | — |
Декабрь | 33 | 29 | 30 | 31 | 31 | 29 | 35 | — |
Информация о работе Прогнозирование в индустрии гостеприимства и туризма