Витамины и их роль в жизни растений

Автор: Пользователь скрыл имя, 10 Декабря 2011 в 14:39, курсовая работа

Описание работы

Целью работы явиляется изучение физиологической роли витаминов в различных классах растений.

Для реализации цели были поставлены следующие задачи:
Изучить витамины как жизненно важные элементы растений;
Изучить принципы классификации витаминов на примере двух групп (жирорастворимые и водорастворимые);
Изучить физиологическую и биохимическую роль витаминов;
Изучить растения, которые способны сами синтезировать необходимые для них витамины;
Определить содержание витаминов в растительных материалах;
Определить влияние отдельных витаминов на жизнедеятельность растительной клетки;
Определить накопление витаминов в растениях к моменту спелости;
Определить причину накопления витаминов в растительных материалах в период онтогенеза.

Работа содержит 1 файл

Документ Microsoft Office Word (2).docx

— 68.21 Кб (Скачать)

        С открытием витаминов и выяснением их природы открылись новые перспективы не только в предупреждении и лечении авитаминозов, но и в области лечения инфекционных заболеваний. Выяснилось, что некоторые фармацевтические препараты (например, из группы сульфаниламидных) частично напоминают по своей структуре и по некоторым химическим признакам витамины, необходимые для бактерий, но в то же время не обладают свойствами этих витаминов. Такие "замаскированные под витамины" вещества захватываются бактериями, при этом блокируются активные центры бактериальной клетки, нарушается её обмен, и происходит гибель бактерий. [3]

    1. Физиологическая и биохимическая роль витаминов

        Витамины — низкомолекулярные органические соединения, которые, присутствуя в пище в небольших количествах, являются незаменимыми ее компонентами.

        Витамины и их производные  — активные участники биохимических  и физиологических процессов  высших растений.

        Растения и природные формы микроорганизмов (за некоторыми исключениями), при нормальных условиях развития, способны сами синтезировать необходимые для их жизнедеятельности витамины, тогда как организмы человека и животных такой способностью не обладают и должны постоянно получать с пищей или непосредственно витамины, или их ближайшие биохимические предшественники - провитамины, которые в человеческом и животном организмах легко превращаются в витамины.

Изолированные от растений отдельные клетки, ткани и органы также не могут синтезировать многие витамины и при их выращивании в культуре in vitro (на искусственной питательной среде) необходимо добавление в питательную среду соответствующего комплекса витаминов.

Витаминной  активностью обладают несколько  десятков химических соединений,которые образуют родственные группы, сходные по строению молекул и своему биологическому действию. [3]

          Каротины входят в состав хлоропластов листьев и хромопластов не фотосинтезирующих органов растений, их синтез более активно проходит на свету. В составе хлоропластных мембран они выполняют роль дополнительных пигментов при фотохимическом поглощении света. Кроме того, каротины, взаимодействуя с хлорофиллом, находящимся в

возбужденном  триплетном состоянии, защищают его  молекулы от необратимого фотоокисления. А взаимодействуя с молекулами кислорода, находящимися в возбужденном синглетном состоянии, каротин способен переводить их в невозбужденное состояние. β-каротин  также принимает участие в  явлениях фототропизма у высших растений. Больше всего каротина содержится в листьях растений и листовых овощах, корнеплодах моркови, рябине, облепихе, абрикосах, томатах и сладком перце.

      Физиологическое значение витамина С теснейшим образом связано с его окислительно-восстановительными свойствами. Возможно, что этим следует объяснить и изменения в углеводном обмене при скорбуте, заключающиеся в постепенном исчезновением гликогена из печени и вначале повышенном, а затем пониженном содержании сахара в крови. По видимому, в результате расстройства углеводного обмена при экспериментальном скорбуте наблюдается усиление процесса распада мышечного белка и появление креатина в моче (А. В. Палладин). Большое значение имеет витамин С для образования коллагенов и функции соединительной ткани. Витамин С играет роль в гидроксилировании и окисления гормонов коры надпочечников. Нарушение в превращениях тирозина, наблюдаемое при цинге, также указывает на важную роль витамина С в окислительных процессах. В моче человека обнаруживается аскорбиновая, дегидроаскорбиновая, дикетогулоновая и щавелевая кислоты, причём две последние являются продуктами необратимого превращения витамина С в организме человека.

        Витамину В12 принадлежит важнейшая роль в синтезе, а возможно, и в переносе подвижных метильных групп. В процессах синтеза и переноса одноуглеродистых фрагментов наблюдается связь (механизм которой ещё не выяснен) между фолиевыми кислотами и группой кобаламина. Предполагают, что витамин В12 участвует также в ферментной системе. [5]

          Избыток никотиновой кислоты выводится из организма с мочой в виде главным образом N1- метилникотинамида и частично некоторых других ее производных.

          Витамин В2 встречается во всех растительных и животных тканях, хотя и в различных количествах. Это широкое распространение витамина В2 соответствует участию рибофлавина во многих биологических процессах. Действительно, можно считать твёрдо установленным, что существует группа ферментов, являющихся необходимыми звеньями в цепи катализаторов биологического окисления, которые имеют в составе своей простетической группы рибофлавин. Эту группу ферментов обычно называют флавиновыми ферментами. К ним принадлежат, например, желтый фермент, диафораза и цитохромредуктаза. Сюда же относятся оксидазы аминокислот, которые осуществляют окислительное дезаменирование аминокислот в животных тканях. Витамин В2 входит в состав указанных коферментов в виде фосфорного эфира. Так как указанные флавиновые ферменты находятся во всех тканях, то недостаток в витамине В2 приводит к падению интенсивности тканевого дыхания и обмена веществ в целом, а следовательно, и к замедлению роста молодых растений. [17]

        В последнее время было установлено, что в состав простетических групп ряда ферментов, помимо флавоновой группы, входят атомы металлов (Cu, Fe, Mo).

         Два производных пиридоксина(витамина В6) — пиридоксаль и пиридоксамин — играют важную роль в обмене аминокислот. Фосфорилированный пиридоксаль (фосфопиридоксаль) участвует в реакции переаминирования — переносе аминогруппы с аминокислоты на кетокислоту. Другими словами, система фосфопиридоксаль – фосфопиродоксамин выполняет коферментную функцию в процессе переаминирования.

           Кроме того,  фосфопиридоксаль является коферментом декарбоксилаз некоторых аминокислот. Таким образом, две реакции азотистого обмена — переаминирование и декарбоксилирование аминокислот — осуществляются при помощи одной и той же коферментной группы, образующейся в организме из витамина В6. Далее установлено, что фосфопиридоксаль играет коферментную роль превращения триптофана, которое, по-видимому, и ведёт к биосинтезу никотиновой кислоты, а также в превращениях ряда серосодержащих и оксиаминокислот. [8] 

ГЛАВА 2. ПРИНЦИПЫ КЛАССИФИКАЦИИ. ОСНОВНЫЕ КЛАССЫ ВИТАМИНОВ

2.1. Жирорастворимые витамины

К этой группе относят следующие витамины:

  • витамин A
  • витамин D
  • витамин E
  • витамин K

Витамин А (ретинол, аксерофтол)

        Витамин А оказывает влияние на рост человека, улучшает состояние кожи, способствует сопротивлению организма инфекции, обеспечивает рост и развитие эпителиальных клеток, входит в состав зрительного пигмента палочек сетчатки глаза — родопсина и зрительного пигмента колбочек — йодопсина. Эти пигменты регулируют темновую адаптацию глаза.

        Витамин А обнаружен в продуктах животного происхождения (рыбий жир, жир молока, сливочное масло, сливки, творог, сыр, яичный желток, жир печени и жир других органов — сердца, мозга). Однако в организме человека (в кишечной стенке и печени) витамин А может образовываться из некоторых пигментов, называемых каротинами, которые широко распространены в растительных продуктах. Наибольшей активностью обладает b-каротин (провитамин А). Считается, что 1 мг b-каротина по эффективности соответствует 0,17 мг витамина А (ретинол). Много содержится каротина в рябине, абрикосах, шиповнике, черной смородине, облепихе, желтых тыквах, арбузах, в красном перце, шпинате, капусте, ботве сельдерея, петрушке, укропе, кресс-салате, моркови, щавеле, зеленом луке, зеленом перце, крапиве, одуванчике, клевере. Отмечают, что количество витаминов изменяется в соответствии с окраской продуктов в красновато-желтый цвет: чем интенсивнее эта окраска, тем больше витамина в продукте. Количество витамина в жирах зависит от состава пищи, которой питается животное. Если пища животного богата витаминами или провитаминами, то жир его содержит высокий процент витамина; так, рыбий жир в 100 раз богаче витамином А, чем сливочное масло, потому что растительный и животный планктон, которым питаются рыбы, очень богат витамином А.

        Витамин А в течение короткого времени выдерживает высокие температуры. Чувствителен к окислению кислородом воздуха и к ультрафиолетовым лучам. Лучше сохранять витамин А в темном месте. В пищевых веществах витамин А более стоек, даже при нагревании.

        Витамин А лучше всасывается и усваивается в присутствии жиров. Провитамином А является b-каротин, из которого в организме образуется ретиналь, затем ретинол. Витамин А накапливается в печени. [7]

Витамины  группы D (кальциферолы)

        Витамином D называют несколько соединений (эргокальциферол — D2, холекальциферол — D3), близких по химической структуре и обладающих способностью регулировать фосфорно-кальциевый обмен. Витамин обеспечивает всасывание кальция и фосфора в тонкой кишке, реабсорбцию фосфора в почечных канальцах и транспорт кальция из крови в костную ткань. Витамин D помогает в борьбе против рахита, способствует повышению сопротивляемости организма, участвует в активизации кальция в тонком кишечнике и минерализации костей.

        Недостаточность витамина D приводит к нарушению фосфорно-кальциевого обмена, следствием чего является рахит — расстройство солевого обмена, что приводит к недостаточному отложению извести в костях. При передозировке витамина D наблюдается сильное токсическое отравление: потеря аппетита, тошнота, рвота, общая слабость, раздражительность, нарушение сна, повышение температуры.

       В растительных продуктах витамина D практически нет. Больше всего витамина содержится в некоторых рыбных продуктах: рыбном жире, печени трески, сельди атлантической, нототении. В яйцах его содержание составляет 2,2 мкг %, в молоке — 0,05 мкг %, в сливочном масле — 1,3 мкг %, присутствует он в грибах, крапиве, тысячелистнике, шпинате. Образованию витамина D способствуют ультрафиолетовые лучи. Овощи, выращенные в парниках, содержат меньше витамина D, чем овощи, выращенные в огороде, так как стекла парниковых рам не пропускают этих лучей.

       Потребность в витамине D взрослых людей удовлетворяется за счет образования его в коже человека под влиянием ультрафиолетовых лучей и частично за счет поступления его с пищей. Кроме того, печень взрослого человека способна накапливать заметное количество витамина, достаточное для обеспечения его потребности в течение 1 года. Ежедневная потребность для взрослого — 1 мкг. Витамин в первую очередь необходим детям (10 мкг/сут детям до 3 лет), так как он играет огромную роль в формировании костного скелета.

        Витамин D относительно устойчив к кислороду воздуха, а также при нагревании до температуры 1000 °С и несколько выше, но продолжительное действие воздуха или нагревание до температуры 2000 °C разрушают витамин D2.

        Витамин D в основном образуется в организме человека в коже под влиянием ультрафиолетовых лучей, которые воздействуют на провитамин D, образующийся в более глубоких слоях кожи из холестерина. Сам витамин D мало активен. Для того чтобы превратиться в свою активную форму, витамин D в печени гидроксилируется и превращается в активный витамин D. [11]

Витамин Е (токоферол)

        Токоферол по химической структуре относится к группе спиртов. Токоферол — витамин размножения, благотворно влияет на работу половых и некоторых других желез, восстанавливает детородные функции, способствует развитию плода во время беременности и новорожденного ребенка. Является природным противоокислительным средством, препятствует окислению витамина А и благотворно влияет на накопление его в печени. Препятствует развитию процессов образования токсичных для организма свободных радикалов и перекисей жирных кислот, окислительного повреждения липидов мембран и клеточных структур. Витамин Е способствует усвоению белков и жиров, участвует в процессах тканевого дыхания, влияет на работу мозга, крови, нервов, мышц, улучшает заживление ран, задерживает старение.

        Гиповитаминоз Е может развиться после значительных физических перегрузок. В мышцах резко снижается количество миозина, гликогена, калия, магния, фосфора и креатина. В таких случаях ведущими симптомами являются гипотония и слабость мышц. У животных, лишенных витамина Е, обнаружены дегенеративные изменения в скелетных мышцах и мышцах сердца, повышение проницаемости и ломкости капилляров, перерождение эпителия семенных канальцев яичек. У эмбрионов возникают кровоизлияния и внутриутробная гибель. Наблюдаются также дегенеративные изменения в нервных клетках и поражение паренхимы печени. С дефицитом витамина Е могут быть связаны также гемолитическая желтуха новорожденных, у женщин — склонность к выкидышам, эндокринные и нервные расстройства.

        Токоферолы содержатся в основном в растительных продуктах. Наиболее богаты ими нерафинированные растительные масла: соевое, хлопковое, подсолнечное, арахисовое, кукурузное, облепиховое. Больше всего витаминоактивного токоферола в подсолнечном масле. Витамин Е содержится практически во всех продуктах, но особенно его много в зерновых и бобовых ростках (проростки пшеницы и ржи, гороха), в овощах — спаржевой капусте, помидорах, салате, горохе, шпинате, ботве петрушки, семенах шиповника. Некоторые количества содержатся в мясе, жире, яйцах, молоке, говяжьей печени.

Информация о работе Витамины и их роль в жизни растений