Автор: Роман Половинкин, 09 Июня 2010 в 20:49, реферат
Нуклеиновые кислоты, биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому.
Нуклеиновые кислоты были впервые выделены из клеток гноя человека и спермы лосося швейцарским врачом и биохимиком Ф.Мишером между 1869 и 1871. Впоследствии было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК), однако их функции долго оставались неизвестными.
Нуклеиновые кислоты
Белки и их роль в жизнедеятельности организма человека
Углеводы и их значение
Жиры и их свойства
Список использованной литературы
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
“ИВАНОВСКИЙ
АВТОТРАНСПОРТНЫЙ КОЛЛЕДЖ”
РЕФЕРАТ ПО ЕСТЕСТВОЗНАНИЮ НА ТЕМУ:
“РОЛЬ МАКРОМОЛЕКУЛ
В
ЧЕЛОВЕЧЕСКОМ ОРГАНИЗМЕ”
Выполнил: студент 1-го курса
Группы
15-К Половинкин Р.С.
Проверила:
Николаева М.В.
2010 год
СОДЕРЖАНИЕ
Список использованной литературы
Нуклеиновые кислоты, биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому.
Нуклеиновые кислоты были впервые выделены из клеток гноя человека и спермы лосося швейцарским врачом и биохимиком Ф.Мишером между 1869 и 1871. Впоследствии было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК), однако их функции долго оставались неизвестными.
В 1928 английский бактериолог Ф.Гриффит обнаружил, что убитые патогенные пневмококки могут изменять генетические свойства живых непатогенных пневмококков, превращая последние в патогенные. В 1945 микробиолог О.Эвери из Рокфеллеровского института в Нью-Йорке сделал важное открытие: он показал, что способность к генетической трансформации обусловлена переносом ДНК из одной клетки в другую, а следовательно, генетический материал представляет собой ДНК. В 1940–1950 Дж.Бидл и Э.Тейтум из Станфордского университета (шт. Калифорния) обнаружили, что синтез белков, в частности ферментов, контролируется специфическими генами. В 1942 Т.Касперсон в Швеции и Ж.Браше в Бельгии открыли, что нуклеиновых кислот особенно много в клетках, активно синтезирующих белки. Все эти данные наводили на мысль, что генетический материал – это нуклеиновая кислота и что она как-то участвует в синтезе белков. Однако в то время многие полагали, что молекулы нуклеиновых кислот, несмотря на их большую длину, имеют слишком простую периодически повторяющуюся структуру, чтобы нести достаточно информации и служить генетическим материалом. Но в конце 1940-х годов Э.Чаргафф в США и Дж.Уайатт в Канаде, используя метод распределительной хроматографии на бумаге, показали, что структура ДНК не столь проста и эта молекула может служить носителем генетической информации.
Типы и распространение. Как мы уже говорили, есть два типа нуклеиновых кислот: ДНК и РНК. ДНК присутствует в ядрах всех растительных и животных клеток, где она находится в комплексе с белками и является составной частью хромосом. У особей каждого конкретного вида содержание ядерной ДНК обычно одинаково во всех клетках, кроме гамет (яйцеклеток и сперматозоидов), где ДНК вдвое меньше. Таким образом, количество клеточной ДНК видоспецифично. ДНК найдена и вне ядра: в митохондриях («энергетических станциях» клеток) и в хлоропластах (частицах, где в растительных клетках идет фотосинтез). Эти субклеточные частицы обладают некоторой генетической автономией.
Бактерии и цианобактерии (сине-зеленые водоросли) содержат вместо хромосом одну или две крупные молекулы ДНК, связанные с небольшим количеством белка, и часто – молекулы ДНК меньшего размера, называемые плазмидами. Плазмиды несут полезную генетическую информацию, например содержат гены устойчивости к антибиотикам, но для жизни самой клетки они несущественны.
Некоторое количество РНК присутствует в клеточном ядре, основная же ее масса находится в цитоплазме – жидком содержимом клетки. Б льшую ее часть составляет рибосомная РНК (рРНК). Рибосомы – это мельчайшие тельца, на которых идет синтез белка. Небольшое количество РНК представлено транспортной РНК (тРНК), которая также участвует в белковом синтезе. Однако оба этих класса РНК не несут информации о структуре белков – такая информация заключена в матричной, или информационной, РНК (мРНК), на долю которой приходится лишь небольшая часть суммарной клеточной РНК.
Генетический материал вирусов представлен либо ДНК, либо РНК, но никогда обеими одновременно.
Одна из основных функций нуклеиновых кислот состоит в детерминации синтеза белков. Информация о структуре белков, закодированная в нуклеотидной последовательности ДНК, должна передаваться от одного поколения к другому, и поэтому необходимо ее безошибочное копирование, т.е. синтез точно такой же молекулы ДНК (репликация).
Репликация и транскрипция. С химической точки зрения синтез нуклеиновой кислоты – это полимеризация, т.е. последовательное присоединение строительных блоков.
Особо важное место среди низкомолекулярных природных органических соединений принадлежит аминокислотам. Они являются производными карбоновых кислот, где один из атомов водорода в углеводородном радикале кислоты замещен на аминогруппу, располагающуюся, как правило, по соседству с карбоксильной группой. Многие аминокислоты являются предшественниками биологически активных соединений: гормонов, витаминов, алкалоидов, антибиотиков и др.
Подавляющее
большинство аминокислот
Искусственно
синтезированные аминокислоты служат
сырьем для производства химических волокон.
ФУНКЦИИ БЕЛКОВ
АЗОТИСТЫЙ БАЛАНС
Косвенным показателем активности обмена белков служит так называемый азотистый баланс. Азотистым балансом называют разность между количеством азота, поступившего с пищей, и количеством азота, выделяемого из организма в виде конечных метаболитов. При расчетах азотистого баланса исходят из того факта, что в белке содержится около 16% азота, то есть каждые 16 г азота соответствуют 100 г белка.
КОЭФФИЦИЕНТ ИЗНАШИВАНИЯ РУБНЕРА
Белки
органов и тканей нуждаются в
постоянном обновлении. Около 400 г белка
из 6 кг, составляющих белковый "фонд"
организма, ежедневно подвергается
катаболизму и должно быть возмещено эквивалентным
количеством вновь образованных белков.
Минимальное количество белка, постоянно
распадающегося в организме, называется
коэффициентом изнашивания. Потеря
белка у человека массой 70 кг составляет
23 г/сут. Поступление в организм белка
в меньшем количестве ведет к отрицательному
азотистому балансу, неудовлетворяющему
пластические и энергетические потребности
организма.
БИОЛОГИЧЕСКАЯ ЦЕННОСТЬ БЕЛКОВ
Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот. Для нормального метаболизма имеет значение не только количество получаемого человеком белка, но и его качественный состав, а именно соотношение заменимых и незаменимых аминокислот.
После приема пищи, особенно белковой, отмечено повышение энергообмена и теплопродукции. При употреблении смешанной пищи энергообмен возрастает примерно на 6%, при белковом питании повышение может достигнуть 30–40% общей энергетической ценности всего введенного в организм белка. Повышение энергообмена начинается через 1–2 ч, достигает максимума через 3 ч и продолжается в течение 7 — 8 ч после приема пищи.
Гормональная регуляция метаболизма белков обеспечивает динамическое равновесие их синтеза и распада.
Белки являются, безусловно, одними из важнейших компонентов в процессе жизнедеятельности организма. А главное, они играют чрезвычайно важную роль в питании человека, так как являются главной составной частью клеток всех органов и тканей организма. Недаром ведь в 2005 году по законопроекту, подготовленному Минздравсоцразвития, "в целях повышения качества питания в новой потребительской корзине предлагается увеличить объем продуктов, содержащих белок животного происхождения, одновременно сократив объем продуктов, содержащих углеводы".
СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ
"Во
всех растениях и животных
присутствует некое вещество, которое
без сомнения является
Информация о работе Роль макромолекул в человеческом организме