Автор: Пользователь скрыл имя, 15 Января 2012 в 20:11, лекция
Клетка – элементарная единица живой системы. Специфические функции в клетке распределены между органоидами – внутриклеточными структурами. Несмотря на многообразие форм, клетки разных типов обладают поразительным сходством в своих главных структурных особенностях.
Клетка – элементарная единица живой системы. Специфические функции в клетке распределены между органоидами – внутриклеточными структурами. Несмотря на многообразие форм, клетки разных типов обладают поразительным сходством в своих главных структурных особенностях.
Клеточная теория
Началом изучения клетки можно считать 1665 год, когда английский учёный Роберт Гук впервые увидел в микроскоп на тонком срезе пробки мелкие ячейки; он назвал их клетками.
По мере усовершенствования микроскопов появлялись все новые сведения о клеточном строении растительных и животных организмов.
С приходом в науку о клетке физических и химических методов исследования было выявлено удивительное единство в строении клеток разных организмов, доказана неразрывная связь между их структурой и функцией.
Основные положения клеточной теории
В качестве подтверждения некоторых из приведенных выше положений клеточной теории назовем общие черты, характерные для животной и растительной клеток.
Общие признаки растительной и животной клетки
Таблица Отличительные признаки растительной и животной клетки
Признаки | Растительная клетка | Животная клетка |
Пластиды | Хлоропласты, хромопласты, лейкопласты | Отсутствует |
Способ питания | Автотрофный (фототрофный, хемотрофный). | Гетеротрофный (сапротрофный, хемотрофный). |
Синтез АТФ | В хлоропластах, митохондриях. | В митохондриях. |
Расщепление АТФ | В хлоропластах и всех частях клетки, где необходимы затраты энергии. | В хлоропластах и всех частях клетки, где необходимы затраты энергии. |
Клеточный центр | У низших растений. | Во всех клетках. |
Целлюлозная клеточная стенка | Расположена снаружи от клеточной мембраны. | Отсутствует. |
Включение | Запасные питательные вещества в виде зерен крахмала, белка, капель масла; в вакуоли с клеточным соком; кристаллы солей. | Запасные питательные вещества в виде зерен и капель (белки, жиры, углевод гликоген); конечные продукты обмена, кристаллы солей; пигменты. |
Вакуоли | Крупные полости, заполненные клеточным соком – водным раствором различных веществ, являющихся запасными или конечными продуктами. Осмотические резервуары клетки. | Сократительные, пищеварительные, выделительные вакуоли. Обычно мелкие. |
Значение теории: она доказывает единство происхождения всех живых организмов на Земле.
Клеточные структуры
Рисунок Схема строения животной и растительной клеток
Таблица Клеточные органеллы, их строение и функции
Органеллы | Строение | Функции |
Цитоплазма | Находится между плазматической мембраной и ядром, включает различные органоиды. Пространство между органоидами заполнено цитозолем – вязким водным раствором разных солей и органических веществ, пронизанным системой белковых нитей – цитоскелетом. | Большинство химических и физиологических процессов клетки проходит в цитоплазме. Цитоплазма объединяет все клеточные структуры в единую систему, обеспечивает взаимосвязь по обмену веществами и энергией между органоидами клетки. |
Наружная клеточная мембрана | Ультрамикроскопическая пленка, состоящая из двух мономолекулярных слоев белка и расположенного между ними бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами- "порами". | Изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности. |
Эндоплазматическая сеть (ЭС) | Ультрамикроскопическая система мембран образующих трубочки, канальцы, цистерны, пузырьки. Строение мембран универсальное (как и наружной), вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭС несет рибосомы, гладкая лишена их. | Обеспечивает транспорт веществ, как в нутрии клетки, так и между соседними клетками. Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические процессы и химические реакции. Гранулярная ЭС участвует в синтезе белка. В каналах ЭС образуются сложные молекулы белка, синтезируются жиры, транспортируются АТФ. |
Рибосомы | Мелкие сферические органоиды, состоящие из рРНК и белка. | На рибосомах синтезируются белки. |
Аппарат Гольджи | Микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по краям которых ответвляются трубочки, отделяющие мелкие пузырьки. | В общей системе мембран любых клеток – наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза распада и вещества, поступившие в клетку, а также вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму: одни используются, а другие выводятся наружу. |
Лизосомы | Микроскопические
одномембранные органеллы округлой
формы. Их число зависит от жизнедеятельности
клетки и ее физиологического состояния.
В лизосомах находятся |
Переваривание пищи, попавшей в животную клетку при фагоцитозе и пиноцитозе. Защитная функция. В клетках любых организмов осуществляют автолиз (саморастворение органелл) особенно в условиях пищевого или кислородного голодания у животных рассасывается хвост. У растений растворяются органеллы при образовании пробковой ткани сосудов древесины. |
Выводы по лекции
Вопросы для самоконтроля
Клеточные структуры: митохондрии, пластиды, органоиды движения, включения. Ядро
Таблица Клеточные органеллы, их строение и функции
Органеллы | Строение | Функции |
Митохондрии | Микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты – кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК. | Универсальная органелла является дыхательным и энергетическим центром. В процессе кислородного (окислительного) этапа в матриксе с помощью ферментов происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ на (кристах). |
Лейкопласты | Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2–3 выроста. Форма – округлая. Бесцветны. | Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется, и они преобразуются в хлоропласты. Образуются из пропластид. |
Хлоропласты | Микроскопические
органеллы, имеющие двухмембранное
строение. Наружная мембрана гладкая.
Внутренняя мембрана образует систему
двухслойных пластин – |
Характерны для растительных клеток органеллы фотосинтеза, способные создавать из неорганических веществ (CO2 и H2O) при наличии световой энергии и пигмента хлорофилла органические вещества – углеводы и свободный кислород. Синтез собственных белков. Могут образовываться из пластид или лейкопластов, а осенью перейти в хлоропласты (красные и оранжевые плоды, красные и желтые листья). |
Хромопласты | Микроскопические органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов, принимают форму кристаллов каратинондов, типичную для данного вида растения. Окраска красная, оранжевая, желтая. | Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах отделяющихся от растений, содержатся кристаллические каротиноиды ?– конечные продукты обмена. |
Клеточный центр | Ультрамикроскопическая
органелла немембранного |
Принимает участие в делении клеток животных и низших растений. В начале деления (в профазе) центриоли расходятся к разным полюсам клетки. От центриолей к центромерам хромосом отходят нити веретена деления. В анафазе эти нити притягивают хроматиды к полюсам. После окончания деления центриоли остаются в дочерних клетках. Удваиваются и образуют клеточный центр. |
Клеточные включения (непостоянные структуры) | Плотные в виде гранул включения, имеющие мембрану (например, вакуоли). | Содержат запасные питательные вещества. |
Органоиды движения | Реснички – многочисленные цитоплазмические выросты на поверхности мембраны. | Удаление частичек пыли (реснитчатые эпителии верхних дыхательных путей), передвижение (одноклеточные организмы). |
Жгутики – единичные цитоплазматические выросты на поверхности клетки. | Передвижение (сперматозоиды, зооспоры, одноклеточные организмы). | |
Ложные ножки (псевдоподии) – амебовидные выступы цитоплазмы. | Образуются у животных в разных местах цитоплазмы для захвата пищи, для передвижения. | |
Миофибриллы – тонкие нити до 1 см. длиной и больше. | Служат для сокращения мышечных волокон, вдоль которых они расположены. | |
Цитоплазма, осуществляющая струйчатое и круговое движение. | Перемещение органелл клетки по отношению к источнику света (при фотосинтезе), тепла, химического раздражителя. |
Рисунок Схема состав и функции клеточных включений
Фагоцитоз – захват плазматической мембраной твёрдых частиц и втягивание их внутрь.
Плазматическая мембрана образует впячивание в виде тонкого канальца, в который попадает жидкость с растворёнными в ней веществами. Этот способ называют пиноценозом.
Ядро
Все организмы, имеющие клеточное строение без оформленного ядра называются прокариотами. Все организмы, имеющие клеточное строение с ядром называются эукариотами.
Таблица Ядерные структуры, их строение и функции
Структуры | Строение | Функции |
Ядерная оболочка | Двухслойная пористая. Наружная мембрана переходит в мембраны ЭС. Свойственна всем клеткам животных и растений, кроме бактерий и сине-зеленых, которые не имеют ядра. | Отделяет ядро от цитоплазмы. Регулирует транспорт веществ из ядра в цитоплазму (РНК и субъединицы рибосом) и из цитоплазмы в ядро (белки, жир, углеводы, АТФ, вода, ионы). |
Хромосомы (хроматин) | В интерфазной
клетке хроматин имеет вид мелкозернистых
нитевидных структур, состоящих из
молекул ДНК и белковой обкладки.
В делящихся клетках |
Хроматиновые структуры – носители ДНК. ДНК состоит из участков – генов, несущих наследственную информацию и передающихся от предков к потомкам через половые клетки. Совокупность хромосом, а, следовательно, и генов половых клеток родителей передается детям, что обеспечивает устойчивость признаков, характерных для данной популяции, вида. В хромосомах синтезируется ДНК, РНК, что служит необходимым фактором передачи наследственной информации при делении клеток и построении молекул белка. |
Ядрышко | Шаровидное тело, напоминающее клубок нити. Состоит из белка и РНК. Образуется на вторичной перетяжке ядрышковой хромосомы. При делении клеток распадается. | Формирование половинок рибосом из рРНК и белка. Половинки (субъединицы) рибосом через поры в ядерной оболочке выходят в цитоплазму и объединяются в рибосомы. |
Ядерный сок (кариолимфа) | Полужидкое вещество, представляющее коллоидный раствор белков, нуклеиновых кислот, углеводов, минеральных солей. Реакция кислая. | Участвует в транспорте веществ и ядерных структур, заполняет пространство между ядерными структурами; во время деления клеток смешивается с цитоплазмой. |
Рисунок Схема строения ядра клетки
Функции ядра клетки:
Выводы по лекции
Вопросы для самоконтроля
Органические вещества в составе клетки (углеводы, белки, липиды, нуклеиновые кислоты, АТФ, витамины и др.)
Биологические полимеры – органические соединения, входящие в состав клеток живых организмов. Полимер – многозвенная цепь простых веществ – мономеров (n ÷ 10тыч. – 100тыс. моном.)
Пример
Свойства биополимеров зависят от строения их молекул, от числа и разнообразия мономерных звеньев.
Если мономеры разные, то повторяющиеся чередования их в цепи создают регулярный полимер.
Пример
…А – А – В – А – А – В… регулярный
…А – А – В – В – А – В – А… нерегулярный
Углеводы
Общая формула Сn(H2O)m
Углеводы в организме человека играют роль энергетических веществ. Самые важные из них – сахароза, глюкоза, фруктоза, а также крахмал. Они быстро усваиваются ("сгорают") в организме. Исключение составляет клетчатка (целлюлоза), которой особенно много в растительной пище. Она практически не усваивается организмом, но имеет большое значение: выступает в роли балласта и помогает пищеварению, механически очищая слизистые оболочки желудка и кишечника. Углеводов много в картофеле и овощах, крупах, макаронных изделиях, фруктах и хлебе.
Информация о работе Клеточная теория. Клеточные структуры: цитоплазма, плазматическая мембрана, ЭДС