Генетика

Автор: Роман Калдин, 08 Июня 2010 в 20:43, реферат

Описание работы

Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.
Однако лишь в начале XX в. ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе «задатки» того огромного множества признаков, из которых слагается каждый отдельный организм.

Содержание

Введение
1. Природа генов
2. Исследования Менделя
2.1. Наследование при моногибридном скрещивании и закон расщепления
2.2. Возвратное, или анализирующее, скрещивание
2.3. Дигибридное скрещивание и закон независимого распределения
2.4. Краткое изложение сути гипотез Менделя
3. Хромосомная теория наследственности
4. Сцепление
5. Группы сцепления и хромосомы
6. Определение пола
6.1. Наследование связанное с полом
7. Взаимодействие между генами
7.1. Неполное доминирование
7.2. Летальные гены
7.3. Эпистаз
7.4. Полигенное наследование
8. Изменчивость
8.1. Дискретная изменчивость
8.2. Непрерывная изменчивость
8.3. Влияние среды
8.4. Источники изменчивости
9. Мутации
9.1 Генные мутации
9.2 Значение мутаций
Заключение
Список использованной литературы

Работа содержит 1 файл

генетика.DOC

— 323.50 Кб (Скачать)
 

Таблица 1. Результаты экспериментов Менделя по наследованию семи пар альтернативных признаков.

(Наблюдаемое  соотношение доминантных и рецессивных признаков приближается к теоретически ожидаемому 3 : 1). 

      Во  всех случаях анализ результатов  показал, что отношение доминантных  признаков к рецессивным в поколении F2 составляло примерно 3 : 1.

      Приведенный выше пример типичен для всех экспериментов Менделя, в которых изучалось наследование одного признака (моногибридные скрещивания).

      На  основании этих и аналогичных  результатов Мендель сделал следующие  выводы:

      1. Поскольку исходные родительские  сорта размножались в чистоте (не расщеплялись), у сорта с пазушными цветками должно быть два «пазушных» фактора, а у сорта с верхушечными цветками - два «верхушечных» фактора.

      2. Растения F1 содержали но одному фактору, полученному от каждого из родительских растений через гаметы.

      3. Эти факторы в F1 не сливаются, а сохраняют свою индивидуальность.

      4. «Пазушный» фактор доминирует  над «верхушечным» фактором, который рецессивен. Разделение пары родительских факторов при образовании гамет (так что в каждую гамету попадает лишь один из них) известно под названием первого закона Менделя, или закона расщепления. Согласно этому закону, признаки данного организма детерминируются парами внутренних факторов. В одной гамете может быть представлен лишь один из каждой пары таких факторов.

      Теперь  мы знаем, что эти факторы, детерминирующие такие признаки, как расположение цветка, соответствуют участкам хромосомы, называемым генами.

      Описанные выше эксперименты, проводившиеся Менделем при изучении наследования одной  пары альтернативных признаков, служат примером моногибридного скрещивания.  

    2.2 Возвратное, или анализирующее, скрещивание 

     Организм  из поколения F1, полученного от скрещивания между гомозиготной доминантной и гомозиготной рецессивной особями, гетерозиготен по своему генотипу, но обладает доминантным фенотипом. Для того чтобы проявился рецессивный фенотип, организм должен быть гомозиготным по рецессивному аллелю. В поколении F2 особи с доминантным фенотипом могут быть как гомозиготами, таки гетерозиготами. Если селекционеру понадобилось выяснить генотип такой особи, то единственным способом, позволяющим сделать это, служит эксперимент с использованием метода, называемого анализирующим ( возвратным ) скрещиванием. Скрещивая организм неизвестного генотипа с организмом, гомозиготным по рецессивному аллелю изучаемого гена, можно определить этот генотип путем одного скрещивания. Например, у плодовой мушки Drosophila длинные крылья доминируют над зачаточными. Особь с длинными крыльями может быть гомозиготной (LL) или гетерозиготной (Ll). Для установления ее генотипа надо провести анализирующее скрещивание между этой мухой и мухой, гомозиготной по рецессивному аллелю (ll). Если у всех потомков от этого скрещивания будут длинные крылья, то особь с неизвестным генотипом - гомозигота по доминантному аллелю. Численное соотношение потомков с длинными и с зачаточными крыльями 1 : 1 указывает на гетерозиготность особи с неизвестным генотипом.

 

      2.3. Дигибридное скрещивание  и закон независимого  распределения

      Установив возможность предсказывать результаты скрещиваний по одной паре альтернативных признаков, Мендель перешел к изучению наследования двух пар таких признаков. Скрещивания между особями, различающимися по двум признакам, называют дигибридными.

      В одном из своих экспериментов  Мендель использовал растения гороха, различающиеся по форме и окраске семян. Применяя метод, описанный в разд. 2.1, он скрещивал между собой чистосортные ( гомозиготные) растения с гладкими желтыми семенами и чистосортные растения с морщинистыми зелеными семенами. У всех растений F1 (первого поколения гибридов) семена были гладкие и желтые. По результатам проведенных ранее моногибридных скрещиваний Мендель уже знал, что эти признаки доминантны; теперь, однако, его интересовали характер и соотношение семян разных талов в поколении F2, полученном от растений F1 путем самоопыления. Всего он собрал от растений F2 556 семян, среди которых было

      гладких желтых   315

      морщинистых желтых  101

      гладких зеленых  108

      морщинистых зеленых  32

Соотношение разных фенотипов составляло примерно 9: 3: 3: 1 (дигибридное расщепление). На основании этих результатов Мендель сделал два вывода:

  1. В поколении F2 появилось два новых сочетания признаков: морщинистые и желтые; гладкие и зеленые.
  2. Для каждой пары аллеломорфных признаков (фенотипов, определяемых различными аллелями) получилось отношение 3 : 1, характерное для моногибридного скрещивания - среди семян было  423 гладких и 133 морщинистых, 416 желтых и 140 зеленых.
 

      Эти результаты позволили Менделю утверждать, что две пары признаков (форма  и окраска семян), наследственные задатки которых объединились в поколении F1, в последующих поколениях разделяются и ведут себя независимо одна от другой. На этом основан второй закон Менделя - принцип независимого распределения, согласно которому каждый признак из одной пары признаков может сочетаться с любым признаком из другой пары.  

2.4. Краткое изложение  сути гипотез Менделя 

  1. Каждый  признак данного организма контролируется парой аллелей.
  2. Если организм содержит два различных аллеля для данного признака, то один из них (доминантный) может проявляться, полностью подавляя проявление другого (рецессивного).
  3. При мейозе каждая пара аллелей разделяется (расщепляется) и каждая гамета получает по одному из каждой пары аллелей (принцип расщепления).
  4. При образовании мужских и женских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары (принцип независимого распределения).
  5. Каждый аллель передается из поколения в поколение как дискретная не изменяющаяся единица.
  6. Каждый организм наследует по одному аллелю (для каждого признака) от каждой из родительских особей.
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      3. Хромосомная теория  наследственности 

      К концу XIX в. в результате повышения  оптических качеств микроскопов  и совершенствования цитологических методов возможно стало наблюдать поведение хромосом в гаметах и зиготах. Еще в 1875 г. Гертвиг обратил внимание на то, что при оплодотворении яиц морского ежа происходит слияние (двух ядер - ядра спермия и ядра яйцеклетки. В 1902 г. Бовери продемонстрировал важную роль ядра в (регуляции развития признаков организма, а в 1882 г. Флемминг описал поведение хромосом во время митоза.

      В 1900 г. законы Менделя были вторично открыты и должным образом  оценены почти одновременно и независимо друг от друга тремя учеными - де Фризом, Корренсом и Чермаком. Корренс сформулировал выводы Менделя в привычной нам форме двух законов и ввел термин «фактор», тогда как Мендель для описания единицы наследственности пользовался словом «элемент». Позднее американец Уильям Сэттон заметил удивительное сходство между поведением хромосом во время образования гамет и оплодотворения и передачей менделевских наследственных факторов.

      На  основании изложенных выше данных Сэттон и Бовери высказали мнение, что хромосомы являются носителями менделевских факторов, и сформулировали так называемую хромосомную теорию наследственности. Согласно этой теории, каждая пара факторов локализована в паре гомологичных хромосом, причем каждая хромосома несет по одному фактору. Поскольку число признаков у любого организма во много раз больше числа его хромосом, видимых в микроскоп, каждая хромосома должна содержать множество факторов.

      В 1909 г. Иогансен заменил термин фактор, означавший основную единицу наследственности, термином ген. Альтернативные формы гена, определяющие его проявление в фенотипе, назвали аллеля- ми. Аллели - это конкретные формы, которыми может быть представлен ген, и они занимают одно и то же место - локус - в гомологичных хромосомах.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.  Сцепление 

      Все ситуации и примеры, обсуждавшиеся  до сих пор, относились к наследованию генов, находящихся в разных хромосомах. Как выяснили цитологи, у человека все соматические клетки содержат по 46 хромосом. Поскольку человек обладает тысячами различных признаков - таких, например, как группа крови, цвет глаз, способность секретировать инсулин, - в каждой хромосоме должно находиться большое число генов.

      Гены, лежащие в одной и той же хромосоме, называют сцепленными. Все  гены какой-либо одной хромосомы образуют группу сцепления; они обычно попадают в одну гамету и наследуются вместе. Таким образом, гены, принадлежащие к одной группе сцепления, обычно не подчиняются менделевскому принципу независимого распределения. Поэтому при дигибридном скрещивании они не дают ожидаемого отношения 9:3:3:1. В таких случаях получаются самые разнообразные соотношения. У дрозофилы гены, контролирующие окраску тела и длину крыла, представлены следующими парами аллелей (назовем соответствующие признаки): серое тело - черное тело, длинные крылья - зачаточные (короткие) крылья. Серое тело и длинные крылья доминируют. Ожидаемое отношение фенотипов в F2 от скрещивания между гомозиготой с серым телом и длинными крыльями и гомозиготой с черным телом и зачаточными крыльями должно составить 9: 3: 3: 1. Это указывало бы на обычное менделевское наследование при дигибридном скрещивании, обусловленное случайным распределением генов, находящихся в разных, негомологичных хромосомах. Однако вместо этого в F2 были получены в основном родительские фенотипы в отношении примерно 3: 1. Это можно объяснить, предположив, что гены окраски тела и длины крыла локализованы в одной и той же хромосоме, т.е. сцеплены.

      Практически, однако, соотношение 3:1 никогда не наблюдается, а возникают все четыре фенотипа. Это объясняется тем, что колкое сцепление встречается редко. В большинстве экспериментов по скрещиванию при наличии сцепления помимо мух с родительскими фенотипами обнаруживаются особи с новыми сочетаниями признаков. Эти новые фенотипы называют рекомбинантными. Все это позволяет дать следующее определение сцепления: два или более генов называют сцепленными, если потомки с новыми генными комбинациями (рекомбинанты) встречаются реже, чем родительские фенотипы.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.  Группы сцепления и хромосомы 

      Генетические  исследования, проводившиеся в начале нашего века, в основном были направлены на выяснение роли генов в передаче признаков. Работы Моргана с плодовой мушкой Drosophila melanogaster показали, что большинство фенотипических признаков объединено у нее в четыре группы сцепления и признаки каждой группы наследуются совместно. Было замечено, что число групп сцепления соответствует числу пар хромосом.

      Изучение  других организмов привело к сходным  результатам. При экспериментальном скрещивании разнообразных организмов обнаружилось, что некоторые группы сцепления больше других (т.е. в них больше генов). Изучение хромосом этих организмов показало, что они имеют разную длину. Морган доказал наличие четкой связи между этими наблюдениями. Они послужили дополнительными подтверждениями локализации генов в хромосомах.

      В 1913 г. Стертевант начал свою работу по картированию положения генов в хромосомах дрозофилы, во это было за 21 год до того, как появилась возможность связать различимые в хромосомах структуры с генами. В 1934 г. было замечено, что в клетках слюнных желез дрозофилы хромосомы примерно в 100 раз крупнее, чем в других соматических клетках. По каким-то причинам эти хромосомы многократно удваиваются, но не отделяются друг от друга, до тех пор пока их не наберется несколько тысяч, лежащих бок о бок. Окрасив хромосомы и изучая их с помощью светового микроскопа, можно увидеть, что они состоят из чередующихся светлых и темных поперечных полос. Для каждой хромосомы характерен свой особый рисунок полос. Первоначально предполагали, что эти полосы представляют собой гены, но оказалось, что дело обстоит не так просто. У дрозофилы можно искусственным путем вызывать различные фенотипические аномалии, которые сопровождаются определенными изменениями в рисунке поперечных полос, видимых под микроскопом. Эти фенотипические и хромосомные аномалии коррелируют в свою очередь с генными локусами. Это позволяет сделать вывод, что полосы на хромосомах действительно как-то связаны с генами, но взаимоотношения между теми и другими остаются пока неясными.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      6.  Определение пола 

 

Рисунок 1.  Хромосомные  наборы самца и самки D. melanogaster. Они состоят из четырех пар хромосом (пара I - половые хромосомы).

Рисунок 2. Вид  половых хромосом человека в метафазе митоза. 

      Особенно  четким примером описанного выше метода установления зависимости между фенотипи- ческими признаками организмов и строением их хромосом служит определение пола. У дрозофилы фенотипические различия между двумя полами явно связаны с различиями в хромосомах (рис. 1). При изучении хромосом у самцов и самок ряда животных между ними были обнаружены некоторые различия. Как у мужских, так и у женских особей во всех клетках имеются пары одинаковых (гомологичных) хромосом, но по одной паре хромосом они различаются. Это валовые хромосомы (гетеросомы). Все остальные хромосомы называют аутосомами. Как можно видеть на рис. 1, у дрозофилы четыре пары хромосом. Три пары (II, III и IV) идентичны у обоих полов, но пара I, состоящая из идентичных хромосом у самки, различается у самца. Эти хромосомы называют X - и Y - хромосомами; генотип самки XX, а самца - XY. Такие различия по половым хромосомам характерны для большинства животных, в том числе для человека (рис. 1), но у птиц (включая кур) и у бабочек наблюдается обратная картина: у самок имеются хромосомы XY, а у самцов - XX. У некоторых насекомых, например у прямокрылых, Y - хромосомы нет вовсе, так что самец имеет генотип ХО.

Информация о работе Генетика