Генетика вирусов. Бактериофаги. Лизогения

Автор: Пользователь скрыл имя, 06 Октября 2011 в 11:42, контрольная работа

Описание работы

Бактериофаги (фаги) (от -греч. φᾰγω — "пожираю") — вирусы, избирательно поражающие бактериальные клетки. Чаще всего бактериофаги размножаются внутри бактерий и вызывают их лизис. Как правило, бактериофаг состоит из белковой оболочки и генетического материала -одноцепочечной или двуцепочечной РНК. Размер частиц приблизительно от 20 до 200 нанометров.

Работа содержит 1 файл

генетика.doc

— 248.50 Кб (Скачать)
  1. Генетика  вирусов. Бактериофаги. Лизогения.
 

Бактериофаги (фаги) (от -греч. φᾰγω — "пожираю") — вирусы, избирательно поражающие бактериальные клетки. Чаще всего бактериофаги размножаются внутри бактерий и вызывают их лизис. Как правило, бактериофаг состоит из белковой оболочки и генетического материала -одноцепочечной или двуцепочечной РНК. Размер частиц приблизительно от 20 до 200 нанометров.

Бактериофаги  — удобная модель для расшифровки  генетического кода, изучения тонкой структуры Гена, молекулярных механизмов Мутагенеза, влияния ионизирующего излучения и других факторов на наследственные структуры организма. Система фаг — бактериальная клетка является идеальным объектом для изучения взаимоотношений вируса и клетки, в частности процессов онкогенеза. Бактериофаги используют в генетической инженерии (Генетическая инженерия), для диагностики и лечения различных инфекционных болезней.

Типичная частица  бактериофага имеет форму головастика  и состоит из так называемой головки  и хвоста. Длина хвоста обычно в 2—4 раза больше диаметра головки. В головке, окруженной белковой оболочкой — капсидом, содержится нуклеиновая кислота. Различают ДНК-содержащие и РНК-содержащие Б. Хвост представляет собой белковую оболочку — продолжение белковой оболочки головки. Существуют также Б. с коротким отростком, не имеющие отростка и нитевидные.

Бактериофаги  подобно другим вирусам являются абсолютными внутриклеточными паразитами, и их размножение происходит в  живой клетке. По характеру взаимодействия с микробной клеткой различают  вирулентные и умеренные Б. Процесс взаимодействия вирулентного Б. с клеткой складывается из нескольких стадий — адсорбции, проникновения, биосинтеза нуклеиновой кислоты и белков, сборки и выхода из клетки. Адсорбция, или прикрепление, Б. происходит к фагоспецифическим рецепторам на поверхности микробной клетки. Проникновение осуществляется следующим образом: хвост Б. с помощью ферментов, находящихся на его конце, «просверливает» оболочку клетки, сокращается, и содержащаяся в головке ДНК инъецируется в клетку. Белковая оболочка Б. остается снаружи. Затем наступает стадия биосинтеза нуклеиновой кислоты и белков фага. Инъецированная ДНК подавляет синтезирующие механизмы клетки, заставляя ее синтезировать ДНК и белки бактериофага. Из образовавшихся в разных частях клетки в разное время фаговой нуклеиновой кислоты и белка формируются новые фаговые частицы (сборка Б.). Выход Б. происходит в результате лизиса клетки. Весь цикл размножения Б. занимает 30—40 мин, в результате может образоваться до 200 фаговых частиц.

Жизненный цикл вирулентных бактериофагов

  1. Фаг приближается к бактерии, и хвостовые нити связываются  с рецепторными участками на поверхности бактериальной клетки.
  2. Хвостовые нити изгибаются и "заякоривают" шипы и базальную пластинку на поверхности клетки; хвостовой чехол сокращается, заставляя полый стержень входить в клетку; этому способствует фермент лизоцим, который находится в базальной пластинке; таким образом нуклеиновая кислота фага (ДНК или РНК) вводится внутрь клетки.
  3. Нуклеиновая кислота фага направляет синтез ферментов фага, используя для этого белоксинтезирующий аппарат бактерии.
  4. Фаг тем или иным способом инактивирует ДНК и РНК хозяина, а ферменты фага совсем расщепляют её; РНК фага "подчиняет" себе клеточный аппарат синтеза белка.
  5. Нуклеиновая кислота фага реплицируется, и направляет синтез новых белков оболочки.
  6. Образуются новые частицы фага в результате спонтанной самосборки белковой оболочки вокруг фаговой нуклеиновой кислоты; под контролем РНК фага синтезируется лизоцим.
  7. Лизис клетки: клетка лопается под воздействием лизоцима; высвобождается около 200—1000 новых фагов; фаги инфицируют другие бактерии.
  8. Стадии 1—7 по времени занимают около 30 минут; этот период называется латентным периодом.
 

Строение  бактериофага.

    1 — головка, 2 — хвост, 3 — нуклеиновая кислота, 4 — капсид, 5 — "воротничок", 6 — белковый чехол хвоста, 7 — фибрилла хвоста, 8 — шипы, 9 — базальная пластинка

Применение

В медицине

Одной из областей использования бактериофагов является антибактериальная терапия, альтернативная приёму антибиотиков. Например, применяются бактериофаги: стрептококковый, стафилококковый, клебсиеллёзный, дизентерийный поливалентный, пиобактериофаг, коли, протейный и колипротейный и другие.

Бактериофаги  применяются также в генной инженерии в качестве векторов, переносящих участки ДНК, возможна также естественная передача генов между бактериями посредством некоторых фагов (трансдукция).

В биологии

Бактериофаги M13, T4, T7 и фаг λ используют для изучения белок - белковых, белок -пептидных и ДНК -белковых взаимодействий методом фагового дисплея. 

  1. Генетическая  структура популяций, влияние миграции и мутации.

ПОПУЛЯЦИОННО-ГЕНЕТИЧЕСКИЕ ПРОЦЕССЫ

Дрейф генов. Под дрейфом генов понимают случайные изменения генных частот, вызванные конечной численностью популяции. Чтобы понять, как возникает генный дрейф, рассмотрим вначале популяцию минимально возможной численности N = 2: один самец и одна самка. Пусть в исходном поколении самка имеет генотип A1A2, а самец – A3A4. Таким образом, в начальном (нулевом) поколении частоты аллелей A1, A2, A3 и A4 равны 0,25 каждая. Особи следующего поколения могут равновероятно иметь один из следующих генотипов: A1A3, A1A4, A2A3 и A2A4. Допустим, что самка будет иметь генотип A1A3, а самец – A2A3. Тогда в первом поколении аллель A4 теряется, аллели A1 и A2 сохраняют те же частоты, что и в исходном поколении – 0,25 и 0,25, а аллель A3 увеличивает частоту до 0,5. Во втором поколении самка и самец тоже могут иметь любые комбинации родительских аллелей, например A1A2 и A1A2. В этом случае окажется, что аллель A3, несмотря на большую частоту, исчез из популяции, а аллели A1 и A2 увеличили свою частоту (p1 = 0,5, p2 = 0,5). Колебания их частот в конце концов приведут к тому, что в популяции останется либо аллель A1, либо аллель A2; иными словами и самец и самка будут гомозиготные по одному и тому же аллею: A1 или A2. Ситуация могла сложиться и так, что в популяции остался бы аллель A3 или A4, но в рассмотренном случае этого не произошло.

Описанный нами процесс дрейфа генов имеет  место в любой популяции конечной численности, с той лишь разницей, что события развиваются с  гораздо меньшей скоростью, чем  при численности в две особи. Генный дрейф имеет два важных последствия. Во-первых, каждая популяция теряет генетическую изменчивость со скоростью, обратно пропорциональной ее численности. Со временем какие-то аллели становятся редкими, а затем и вовсе исчезают. В конце концов, в популяции остается один-единственный аллель из имевшихся, какой именно – это дело случая. Во-вторых, если популяция разделяется на две или большее число новых независимых популяций, то дрейф генов ведет к нарастанию различий между ними: в одних популяциях остаются одни аллели, а в других – другие. Процессы, которые противодействуют потере изменчивости и генетическому расхождению популяций, – это мутации и миграции.

Мутации. При образовании гамет происходят случайные события – мутации, когда родительский аллель, скажем A1, превращается в другой аллель (A2, A3 или любой иной), имевшийся или не имевшийся ранее в популяции. Например, если бы в нуклеотидной последовательности «…TЦT ТГГ…», кодирующей участок полипептидной цепи «…серин-триптофан…», третий нуклеотид, Т, в результате мутации передался ребенку как Ц, то в соответствующем участке аминокислотной цепи белка, синтезирующегося в организме ребенка, вместо серина был бы расположен аланин, поскольку его кодирует триплет TЦЦ. Регулярно возникающие мутации и образовали в длинном ряду поколений всех обитающих на Земле видов то гигантское генетическое разнообразие, которое мы сейчас наблюдаем.

Вероятность, с  которой происходит мутация, называется частотой, или темпом, мутирования. Темпы мутирования разных генов  варьируют от 10–4 до 10–7 на поколение. На первый взгляд, эти величины кажутся незначительными. Однако следует учесть, что, во-первых, геном содержит много генов, а, во-вторых, что популяция может иметь значительную численность. Поэтому часть гамет всегда несет мутантные аллели, и практически в каждом поколении появляется одна или больше особей с мутациями. Их судьба зависит от того, насколько сильно эти мутации влияют на приспособленность и плодовитость. Мутационный процесс ведет к увеличению генетической изменчивости популяций, противодействуя эффекту дрейфа генов.

Мутация. Генетика - наука сравнительно молодая. Лишь на рубеже 18-19 веков были сделаны, попытки оценить наследственность людей. Мопертюи в 1750 году впервые предположил, что различные патологии могут передаваться по наследству. Затем в 19 веке были выявлены некоторые закономерности. Но официальной датой рождения генетики принято считать весну 1900 года, когда независимо друг от друга голландский ученый Г. де Фриз немецкий Корренс и австрийский ученый Чермак "переоткрыли" законы Менделеева, что и дало толчок к развитию генетических исследований. Уже в 1901-1903 годах Г. де Фризом была создана мутационная теория, постулаты которой справедливы и сегодня: мутации возникают внезапно, устойчивы, могут быть прямыми и обратными и, наконец, могут возникать повторно.

Комбинативная изменчивость. Комбинативная изменчивость возникла с появлением полового размножения, она связана с различными вариантами перекомбинации родительских задатков и является источником бесконечного разнообразия сочетаемых признаков. Так, дети, рожденные в разное время у одной родительской пары, похожи, но всегда отличаются рядом признаков. Кобинативная изменчивость обуславливается вероятностным участием гамет в оплодотворении, имеющих различные перекомбинации хромосом родителей. При этом минимальное число возможных сортов гамет у мужчин и женщин огромно, оно равно 223 (без учета кроссинговера). Поэтому вероятность рождения на земле двух одинаковых людей ничтожно мала.

Большой вклад  в комбинативную изменчивость вносит как раз кроссинговер, приводящий к образованию новых групп сцепления благодаря рекомбинации аллелей. При этом возможное число генотипов (g) равно:

g=[r(r+1)] n r - число  аллелей 

-------- n - число  генов

Этот закон  окончательно был сформулирован в 1908 английским математиком Харди и немецким врачом-биологом Венбергом. И теперь этот закон носит имя закон Харди-Венберга.

Мутационная изменчивость. Мутационная изменчивость связана  с процессом образования мутаций. Мутации - это внезапные скачкообразные стойкие изменения в структуре генотипа. Организмы, у которых произошла мутация, называются мутантами. Мутационная теория была создана, как говорилось выше, Гуго де Фризом в 1901-1903 гг. На основных ее положениях строится современная генетика: мутации, дискретные изменения наследственности, в природе спонтанны, мутации передаются по наследству, встречаются достаточно редко и могут быть различных типов. В зависимости от того, какой признак положен в основу, на сегодняшний день существует несколько систем классификации мутаций.

Классификация мутаций 1. По способу возникновения. Различают спонтанные и индуцированные мутации Спонтанные происходят в  природе крайне редко с частотой 1-100 на миллион экземпляров данного  гена. В настоящие время, очевидно, что спонтанный мутационный процесс зависит как от внутренних, так и от внешних факторов, которые называют мутационным давлением среды.

Индуцированные  мутации возникают при воздействии  на человека мутагенами - факторами, вызывающими  мутации. Мутагены же бывают трех видов:

* Физические (радиация, электромагнитное излучение, давление, температура и т.д.)

* Химические (цитостатики,  спирты, фенолы и т.д.)

* Биологические  (бактерии и вирусы )

2. По отношению  к зачатковому пути. Существуют  соматические и генеративные мутации. Генеративные мутации возникают в репродуктивных тканях и поэтому не всегда выявляются. Для того, чтобы выявилась генеративная мутация, необходимо, чтобы мутантная гамета участвовала в оплодотворении.

3. По адаптивному  значению. Выделяют положительные, отрицательные и нейтральные мутации. Эта классификация связана с оценкой жизнеспособности образовавшегося мутанта.

4. По изменению  генотипа. Мутации бывают генные, хромосомные и геномные.

Информация о работе Генетика вирусов. Бактериофаги. Лизогения