Автор: Пользователь скрыл имя, 29 Марта 2013 в 09:20, реферат
Вестибулярный анализатор – один из важнейших компонентов системы ориентации человека в пространстве и организации движений. Это нейродинамическая система, осуществляющая восприятие и анализ информации о положении и движении тела в пространстве.
Вестибулярный анализатор имеет важное значение в регуляции положения тела в пространстве и его движений. Периферическая часть вестибулярного анализатора размещается во внутреннем ухе и состоит из преддверия и трех полукружных каналов, внутри которых находится заполненная эндолимфой полость .
Вестибулярный анализатор – один из важнейших компонентов системы ориентации человека в пространстве и организации движений. Это нейродинамическая система, осуществляющая восприятие и анализ информации о положении и движении тела в пространстве.
Вестибулярный анализатор имеет важное значение в регуляции положения тела в пространстве и его движений. Периферическая часть вестибулярного анализатора размещается во внутреннем ухе и состоит из преддверия и трех полукружных каналов, внутри которых находится заполненная эндолимфой полость .
В преддверии находится так называемый отолитовый прибор, представляющий скопление рецепторных клеток. От этих клеток отходят специальные волоски, которые, сплетаясь, образуют отолитовую мембрану. На поверхности мембраны располагаются известковые кристаллики — отолиты. При изменении положения тела в пространстве или его прямолинейном движении происходит смещение отолитов, в результате которого изменяется их давление на волоски чувствительных клеток. Изменение давления вызывает возбуждение рецепторов и возникновение нервных импульсов, передающихся затем в подкорковые отделы головного мозга и далее в височные отделы КГМ.
Рецепторные клетки полукружных
каналов также имеют
Реакция рецепторных клеток
вестибулярного аппарата, вызванная
изменением положения тела в пространстве
или его движением, приводит к
рефлекторному
Таким образом, вестибулярный аппарат имеет важное значение в пространственной ориентации человека, координации его движений в покое и в процессе двигательной деятельности. По мнению И. С. Беритова (1953), благодаря вестибулярному аппарату в мозге у человека возможно формирование пространственного образа пройденного пути. Развитие вестибулярного аппарата у детей и подростков в настоящее время мало изучено. Существуют морфологические данные, что ребенок рождается с достаточно зрелыми подкорковыми отделами вестибулярного анализатора.
Так же как и у взрослых, у детей встречается явление укачивания, возникновение которого возможно при перевозке детей в автомобилях, поездах, самолетах и т. д. Эффективным средством против этого является медицинский препарат аэрон. Фармакологическое действие аэрона направлено на снижение возбудимости вестибулярных рецепторов. Важное значение в снижении возбудимости вестибулярного аппарата имеет его специальная тренировка.
Возрастные особенности:
Раннее морфологическое созревание вестибулярного анализатора обеспечивает появление уже на 4-м месяце внутриутробного развития различных рефлекторных реакций с вестибулярного аппарата. Они проявляются в изменении тонуса мышц, в сокращении мышц конечностей, шеи, туловища, мышц глазных яблок.
У грудных детей можно наблюдать целый ряд рефлексов с вестибулярного аппарата: разведение рук и растопыривание пальцев при сотрясении кроватки, условные рефлексы на положение матери для кормления грудью, положительный условный рефлекс на покачивание. На 2—3-м месяце ребенок дифференцирует вестибулярные раздражения, определяя, например, направление качания.
Многие вестибулярные рефлексы (разведение рук при встряхивании) наблюдаются только в первые месяцы жизни. Показано, что возбудимость вестибулярного анализатора уменьшается с увеличением возраста детей. Высокая возбудимость вестибулярного анализатора во внутриутробном периоде развития объясняется влиянием, которое он оказывает на развитие нервной системы. Предполагают, что раннее морфологическое и функциональное созревание вестибулярного анализатора имеет большое значение, способствуя развитию связанных с ним нейронов спинного и головного мозга. Импульсы, идущие по нервным волокнам от вестибулярных рецепторов к соответствующим нейронам продолговатого мозга, вызывают освобождение в конечных разветвлениях этих волокон специфических химических веществ. Последние способствуют созреванию нейронов вестибулярных ядер продолговатого мозга и миелинизации их аксонов, направляющихся к мотонейронам спинного мозга, нейронам мозжечка и ядер глазодвигательного нерва. Созревание этих нейронов также направляется химическим веществом, выделяемым в конечных разветвлениях аксонов нейронов вестибулярных ядер продолговатого мозга.
Глава 14. СЕНСОРНЫЕ СИСТЕМЫ
ЧАСТНАЯ ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ
Вестибулярная система
Вестибулярная система играет наряду со зрительной и соматосенсорной системами ведущую роль в пространственной ориентировке человека. Она получает, передает и анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения, а также при изменении положения головы в пространстве. При равномерном движении или в условиях покоя рецепторы вестибулярной сенсорной системы не возбуждаются. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры, что обеспечивает сохранение равновесия тела. Эти влияния осуществляются рефлекторным путем через ряд отделов ЦНС.
Строение и функции рецепторов вестибулярной системы. Периферическим отделом вестибулярной системы является вестибулярный аппарат, расположенный в лабиринте пирамиды височной кости. Он состоит из преддверия (vestibulum) и трех полукружных каналов (canales cemicircularis). Кроме вестибулярного аппарата, в лабиринт входит улитка, в которой располагаются слуховые рецепторы. Полукружные каналы (рис. 14.17) располагаются в трех взаимно перпендикулярных плоскостях: верхний — во фронтальной, задний — в сагиттальной и латеральный — в горизонтальной. Один из концов каждого канала расширен (ампула).
Вестибулярный аппарат включает в себя также два мешочка: сферический (sacculus) и эллиптический, или маточку (utriculus). Первый из них лежит ближе к улитке, а второй — к полукружным каналам. В мешочках преддверия находится отолитовый аппарат: скопления рецепторных клеток (вторично-чувствующие механорецепторы) на возвышениях, или пятнах (macula sacculi, macula utriculi). Выступающая в полость мешочка часть рецепторной клетки оканчивается одним более длинным подвижным волоском и 60—80 склеенными неподвижными волосками. Эти волоски пронизывают желеобразную мембрану, содержащую кристаллики карбоната кальция — отолиты. Возбуждение волосковых клеток преддверия происходит вследствие скольжения отоли-товой мембраны по волоскам, т. е. их сгибания (рис. 14.18).
В перепончатых полукружных каналах, заполненных, как и весь лабиринт, плотной эндолимфой (ее вязкость в 2—3 раза больше, чем у воды), рецепторные волосковые клетки сконцентрированы только в ампулах в виде крист (cristae ampularis). Они также снабжены волосками. При движении эндолимфы (во время угловых ускорений), когда волоски сгибаются в одну сторону, волосковые клетки возбуждаются, а при противоположно направленном движении — тормозятся. Это связано с тем, что механическое управление ионными каналами мембраны волоска с помощью микрофиламентов, описанное в разделе «механизмы слуховой рецепции», зависит от направления сгиба волоска: отклонение в одну сторону приводит к открыванию каналов и деполяризации волосковой клетки, а отклонение в противоположном направлении вызывает закрытие каналов и гиперполяризацию рецептора. В волосковых клетках преддверия и ампулы при их сгибании генерируется рецепторный потенциал, который усиливает выделение ацетилхолина и через синапсы активирует окончания волокон вестибулярного нерва.
Волокна вестибулярного нерва (отростки биполярных нейронов) направляются в продолговатый мозг. Импульсы, приходящие по этим волокнам, активируют нейроны бульбарного вестибулярного комплекса, в состав которого входят ядра: преддверное верхнее, или Бехтерева, преддверное латеральное, или Дейтерса, Швальбе и др. Отсюда сигналы направляются во многие отделы ЦНС: спинной мозг, мозжечок, глазодвигательные ядра, кору большого мозга, ретикулярную формацию и ганглии автономной нервной системы.
Электрические явления в вестибулярной системе. Даже в полном покое в вестибулярном нерве регистрируется спонтанная им-пульсация. Частота разрядов в нерве повышается при поворотах головы в одну сторону и тормозится при поворотах в другую (детекция направления движения). Реже частота разрядов повышается или, наоборот, тормозится при любом движении. У 2/з волокон обнаруживают эффект адаптации (уменьшение частоты разрядов) во время длящегося действия углового ускорения. Нейроны вестибулярных ядер обладают способностью реагировать и на изменение положения конечностей, повороты тела, сигналы от внутренних органов, т. е. осуществлять синтез информации, поступающей из разных источников.
Комплексные рефлексы, связанные с вестибулярной стимуляцией. Нейроны вестибулярных ядер обеспечивают контроль и управление различными двигательными реакциями. Важнейшими из этих реакций являются следующие: вестибулоспинальные, вестибуловегетативные и вестибулоглазодвигательные. Вестибулоспинальные влияния через вестибуло-, ретикуло- и руброспинальные тракты изменяют импульсацию нейронов сегментарных уровней спинного мозга. Так осуществляется динамическое перераспределение тонуса скелетной мускулатуры и включаются рефлекторные реакции, необходимые для сохранения равновесия. Мозжечок при этом ответствен за фазический характер этих реакций: после его удаления вестибулоспинальные влияния становятся по преимуществу тоническими. Во время произвольных движений вестибулярные влияния на спинной мозг ослабляются.
В вестибуловегетативные
реакции вовлекаются сердечно-
Вестибулоглазодвигательные рефлексы (глазной нистагм) состоят в медленном движении глаз в противоположную вращению сторону, сменяющемся скачком глаз обратно. Само возникновение и характеристика вращательного глазного нистагма — важные показатели состояния вестибулярной системы, они широко используются в морской, авиационной и космической медицине, а также в эксперименте и клинике.
Основные афферентные пути и проекции вестибулярных сигналов. Есть два основных пути поступления вестибулярных сигналов в кору большого мозга: прямой — через дорсомедиальную часть вентрального постлатерального ядра и непрямой вестибулоцеребеллоталамический путь через медиальную часть вентролатерального ядра. В коре полушарий большого мозга основные афферентные проекции вестибулярного аппарата локализованы в задней части постцентральной извилины. В моторной зоне коры спереди от нижней части центральной борозды обнаружена вторая вестибулярная зона.
Функции вестибулярной системы. Вестибулярная система помогает организму ориентироваться в пространстве при активном и пассивном движении.
При пассивном движении корковые отделы системы запоминают направление движения, повороты и пройденное расстояние. Следует подчеркнуть, что в нормальных условиях пространственная ориентировка обеспечивается совместной деятельностью зрительной и вестибулярной систем. Чувствительность вестибулярной системы здорового человека очень высока: отолитовый аппарат позволяет воспринять ускорение прямолинейного движения, равное всего 2 см/с2. Порог различения наклона головы в сторону — всего около 1°, а вперед и назад — 1,5—2°. Рецепторная система полукружных каналов позволяет человеку замечать ускорения вращения 2—3°∙ с-2.
Соматосенсорная система
В соматосенсорную систему включают систему кожной чувствительности и чувствительную систему скелетно-мышечного аппарата, главная роль в которой принадлежит проприорецепции.
Кожная рецепция. Кожные рецепторы. Рецепторная поверхность кожи огромна (1,4—2,1 м2). В коже сосредоточено множество рецепторов, чувствительных к прикосновению, давлению, вибрации, теплу и холоду, а также к болевым раздражениям. Их строение весьма различно (рис. 14.19). Они локализуются на разной глубине кожи и распределены неравномерно по ее поверхности. Больше всего таких рецепторов в коже пальцев рук, ладоней, подошв, губ и половых органов. У человека в коже с волосяным покровом (90 % всей кожной поверхности) основным типом рецепторов являются свободные окончания нервных волокон, идущих вдоль мелких сосудов, а также более глубоко локализованные разветвления тонких нервных волокон, оплетающих волосяную сумку. Эти окончания обеспечивают высокую чувствительность волос к прикосновению. Рецепторами прикосновения являются также осязательные мениски (диски Меркеля), образованные в нижней части эпидермиса контактом свободных нервных окончаний с модифицированными эпителиальными структурами. Их особенно много в коже пальцев рук. В коже, лишенной волосяного покрова, находят много осязательных телец (тельца Мейсснера). Они локализованы в сосочковом слое дермы пальцев рук и ног, ладонях, подошвах, губах, языке, половых органах и сосках молочных желез. Эти тельца имеют конусовидную форму, сложное внутреннее строение и покрыты капсулой. Другими инкапсулированными нервными окончаниями, но расположенными более глубоко, являются пластинчатые тельца, или тельца Фатера—Пачини (рецепторы давления и вибрации). Они есть также в сухожилиях, связках, брыжейке. В соединительнотканной основе слизистых оболочек, под эпидермисом и среди мышечных волокон языка находятся инкапсулированные нервные окончания луковиц (колбы Краузе).