Автор: Юлия 1111, 16 Октября 2010 в 09:49, реферат
Методы экстирпации и подсадки. Двусторонняя овариоэктомия. Методы введения фармацевтических препаратов лабораторным животным. Методы биологического тестирования. Биохимические методы в физиологии. Электрофизиологические методы.
нет
Научный анализ, основывающийся на натуралистических наблюдениях или на лабораторных опытах, опирается на измерения, с помощью которых наблюдениям придается количественный характер. От так называемого уровня измерения зависит, какие арифметические операции могут быть применены к числам, что, следовательно, и обусловливает использование соответствующих статистических методов. Исследователь должен учитывать уровень измерений и предвидеть природу статистической обработки результатов уже при планировании опытов, так как эти соображения помогут решить вопрос о точности измерительных приборов и требуемом количестве опытов.
Необходимо различать четыре общих уровня измерения или оценки: номинальный, ординарный, интервальный и соотносительный. Низшим уровнем является номинальный, где такие символы, как буквы или цифры, используются просто для классификации объектов или явлений. В этом случае количество измерений, попадающих в различные классы в условиях эксперимента и контроля, сравниваются с использованием биномиальной статистики. Если возможно упорядочить наблюдения так, чтобы они находились в каких-то отношениях один к другому (например, «больше чем», «меньше чем» и т. д.), то будем иметь дело с ординарной шкалой. Если, кроме того, можно обнаружить интервалы между числами на такой шкале, то будем иметь дело с интервальной шкалой, которая имеет произвольную нулевую точку (как в случае температурной шкалы). Если же шкала имеет еще и истинную нулевую точку в начале, как, например, шкалы высоты, массы, то будет достигнут наивысший уровень измерения, т. е. соотносительная шкала. Параметры, измеряемые с помощью номикалькой или ординарной шкалы, обрабатываются с применением непараметрической статистики (например, χ2-есты (Connover, 1971; Siegel, 1956)), тогда как данные, измеряемые по интервальной и соотносительной шкале, как правило, обрабатываются с помощью параметрических статистических методов (например, t-тесты) (если различные предположения о параметрах популяции, из которой взят пример, соответствуют данным). Параметры популяции, подвергаемые непараметрическим статистическим процедурам, не обязательно должны соответствовать определенным условиям, например нормальному распределению. Поэтому эти процедуры широко используются в опытах по физиологической психологии, где измерения, как правило, проводятся па ординарном уровне и объем выборки часто является небольшим. В план проведения опытов, описанных в этой книге, включено сопоставление экспериментальных и контрольных данных. Для таких данных, полученных из независимых событий, полезной непараметрической статистикой является U-гест Манна - Уитни. При использовании другой схемы опытов животное служит контролем самого себя, как в случае сравнения поведения до и после введения препарата и при удалении отделов головного мозга. Стандартной непараметрической оценкой для таких данных, полученных при наличии связанных событий, является критерий для сопряженных пар знаковых рангов Вилкоксона (Siegel, 1956). Кроме того, непараметрические методы используются для анализа данных, полученных в повторных текстах, по результатам которых и строят кривые обучения и кривые реактивности (Krauth, 1980).
В этой книге в качестве подопытных животных для большей части экспериментов используют крыс. Для подробного ознакомления с общими лабораторными процедурами, включая уход за животными и обращение с ними, в особенности с крысами, читателям рекомендуем обратиться к работам Бейкера с сотрудниками (Baker et al., 1979), Ферриса (Harris, 1957), Гудмана и Гилмана (Goodman and Oilman, 1975), Лейн-Петтера с сотрудниками (Lane-Petter et al., 1967), Леонарда (Leonard, 1968), Майерса (Myers, 1971 а), Манна (Munn, 1950) и Шорта и Вуднотта (Short
and Woodnott, 1969).
В поведенческих исследованиях чаще всего используют такие линии крыс, как капюшонные линии Лонг-Эванса; белые линии Спраг-Доули и Вистар. В целях получения и сопоставления результатов желательно применять стандартные линии. Однако степень универсальности результатов может зависеть от использования нескольких линий (а также видов).
Для проведения опытов на животных необходимо содержать их в чистоте, удобстве и обезопасить от болезней. Этого можно достичь, руководствуясь подробно разработанными стандартами размещения, кормления, гигиены, постоперационного ухода (см. приведенные выше ссылки) и зная обычные заболевания животных (Myers, 1971 a; Short and Woodnott, 1969).
Большая часть поведенческих опытов вызывает дискомфорт у животных, независимо от того, вызван ли он пищевой деприва-цией, использованием центральной или периферической аверсив-ной стимуляции, введением препаратов или просто поднятием животного в воздух. Экспериментатор должен постоянно помнить об этом и стараться по возможности уменьшить дискомфорт подопытного животного.
Ниже приводятся рекомендации для проведения опытов на животных, которые составляют один из разделов «Принципов использования животных» в «Руководстве к дотациям и контрактам Национального института здравоохранения США» от 1978 г.:
«1. Опыты, в которых используются живые позвоночные и ткани живых организмов для проведения исследований, должны выполняться под контролем квалифицированных ученых-биологов, физиологов или медиков.
2. Размещение, уход и кормление всех экспериментальных животных должны находиться под контролем квалифицированного ветеринара или другого ученого, компетентного в данных вопросах.
3. Исследование по своему характеру должно дать полезные результаты на благо общества и не должно быть случайным и бесполезным.
4. Эксперимент должен опираться на знание исследуемой болезни или проблемы и планироваться так, чтобы ожидаемые результаты оправдывали его проведение.
5. Статистический анализ, математические модели или биологические системы in vitro должны использоваться, если они соответственно дополняют результаты опытов на животных и позволяют сократить число используемых животных.
6. Опыты должны проводиться так, чтобы не подвергать животное ненужным страданиям и не наносить ему вреда.
7. Ученый, отвечающий за опыт, должен быть готов прекратить его, если он/она считает, что продолжение опыта может вызвать ненужное увечье или страдание животных.
8. Если сам опыт вызывает больше дискомфорта у животного, чем наркоз, то необходимо довести животное (путем применения наркоза) до состояния, когда оно не воспринимает боль, и поддерживать это состояние до тех пор, пока опыт или процедура не будут завершены. Исключение составляют только те случаи, когда наркоз может повредить цели опыта, а данные нельзя получить никаким иным способом, кроме как проведением подобных опытов. Такие процедуры должны тщательно контролироваться руководством или другим квалифицированным старшим сотрудником.
9. Постэкспериментальный уход за животным должен свести до минимума дискомфорт и последствия травмы, нанесенной животным в результате опыта, в соответствии с принятой практикой ветеринарной медицины.
10.
Если необходимо умертвить экспериментальное
животное, то это делают так, чтобы достичь
мгновенной гибели. Ни одно животное не
должно быть уничтожено до тех пор, пока
не наступит его смерть».
Почти во всех случаях поведенческого и нейрологического тестирования, которые описаны в последующих главах, необходимо брать животных в руки. Животное нужно приучать к этой процедуре на протяжении нескольких дней перед началом опыта. Такое обращение предполагает доставание животного рукой из клетки, помещение его на стол, осторожное поглаживание и перенесение с одного места на другое. Со временем животные перестают сопротивляться таким процедурам, если их осуществлять бережно.
Не держите животное за хвост и старайтесь не прихватить кожу и сильно не надавливать на животное. Лучше брать животное сзади под лопатки, подводя большой палец под одну переднюю конечность, а остальные пальцы - под вторую конечность. Сила захвата животного должна соответствовать степени его сопротивления. Если животное держать так, чтобы его передние конечности перекрещивались, то оно не сможет укусить.
При частом взятии на руки лабораторные крысы становятся довольно ручными и ими легко управлять. Для введения препаратов желательно использовать помощника, при этом вторую руку экспериментатор использует для вытягивания задних конечностей животного. При достаточной практике внутрибрюшинные инъекции можно производить самостоятельно, путем захвата задних конечностей крысы и одновременного инъецирования ее другой рукой.
Перед инъекцией полезно успокоить животное; для этого нужно захватить животное так, как это описано выше, и затем медленно раскачивать его вперед и назад по широкой дуге.
Обычным
методом маркировки
крыс является нанесение на уши животного
прорезей или отверстий, пока оно находится
под наркозом. Уши животного тонкие и не
очень кровоточат. Предпочтительным является
метод маркировки тела и хвоста каким-либо
биологическим красителем, например желтой
пикриновой кислотой или красным карбофуксином.
Такая бинарная система позволяет осуществить
индивидуальное кодирование 63 крыс. (Если
используете несколько крыс, то кодируйте
их только четными числами, так как это
уменьшает число необходимых отверстий
или меток.)
АППАРАТУРА И МЕТОДЫ ИЗУЧЕНИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ
Успехи современной физиологии в изучении функций целостного организма, его систем, органов, тканей и клеток во многом обусловлены широким внедрением в практику физиологического эксперимента электронной техники, анализирующих устройств и электронных вычислительных машин, а также биохимических и фармакологических методов исследования. В последние годы в физиологии качественные методы дополняют количественными, что позволяет определять изучаемые параметры различных функций в соответствующих единицах измерения. Совместно с физиологами в разработке новых методических подходов участвуют физики, математики, инженеры и другие специалисты.
Быстрое совершенствование электронной техники открыло новые пути для познания многих физиологических процессов, что ранее было принципиально невозможно.
Создание
разнообразных систем датчиков, преобразующих
неэлектрические процессы в электрические,
совершенствование измерительной и регистрирующей
аппаратуры позволили разработать новые,
высокоточные методы объективной регистрации
(например, биотелеметрия) физиологических
функций, что в значительной мере расширило
возможности эксперимента.
СХЕМА
СВЯЗЕЙ МЕЖДУ ПРИБОРАМИ И ОБЪЕКТАМИ ИССЛЕДОВАНИЯ
При исследовании физиологических функций с использованием различной аппаратуры в эксперименте и клинике формируют своеобразные системы. Их можно разделить на две группы: 1) системы для регистрации различных проявлений жизнедеятельности и анализа полученных данных и 2) системы для воздействия на организм или его структурно-функциональные единицы.
Для того, чтобы наглядно представить взаимодействия отдельных элементов системы, необходимо рассмотреть их в виде блок-схем. Такие блок-схемы и их символы удобно использовать студентам для иллюстрации протоколов экспериментов во время практических занятий. По нашему мнению, подобная форма изображения хотя бы части условий эксперимента значительно сократит его описание и будет способствовать пониманию схем устройств и приборов.
Блок-схемы, отражающие основные формы взаимодействия между объектом исследования и различными устройствами для регистрации функций.
Многие функции организма можно исследовать без электронной аппаратуры и регистрировать процессы либо непосредственно, либо после некоторых преобразований. Примерами могут служить измерение ртутным термометром температуры, регистрация сердечных сокращений с помощью пишущего рычажка и кимографа, регистрация дыхания с использованием капсулы Марэ, плетизмография с применением водяного плетизмографа, определение пульса и т. д. Реальные схемы установок для плетизмографии, регистрации моторики желудка и записи дыхания приведены на рис.
Блок-схема системы, позволяющей регистрировать биоэлектрические процессы в организме, показана на рис. \, В. Она состоит из объекта исследования, отводящих электродов, усилителя, регистратора и блока питания. Регистрирующие системы такого рода используют для электрокардиографии, электроэнцефалографии, электрогастрографии, электромиографии и др.
При исследовании и регистрации с помощью электронной аппаратуры целого ряда неэлектрических процессов необходимо их предварительно преобразовать в электрические сигналы. Для этого используют различные датчики. Одни датчики сами способны генерировать электрические сигналы и не нуждаются в питании от источника тока, другим это питание необходимо. Величина сигналов датчика обычно невелика, поэтому для регистрации их необходимо предварительно усиливать. Системы с применением датчиков используют для баллистокардиографии, плетизмографии, сфигмографии, регистрации двигательной активности, кровяного давления, дыхания, определения газов в крови и выдыхаемом воздухе и т. д.