Автор: Пользователь скрыл имя, 03 Октября 2011 в 17:35, реферат
Оно состоит из ушной раковины (auricula) и наружного слухового прохода (meatus acusticus ext.). Ушная раковина имеет сложную конфигурацию. Ее основу, за исключением области мочки (lobulus), составляет эластический хрящ, покрытый надхрящницей и кожей. В мочке содержится жировая ткань.
В
поддержании динамического
Восходящий и нисходящий слуховые пути связывают спиральный орган с височной долей коры большого мозга. Восходящий путь - это совокупность ассоциированных между собой слуховых образований, располагающихся в определенной последовательности: спиральный узел, кохлеарные ядра, верхняя олива, нижние холмики пластинки крыши, внутреннее коленчатое тело, височная доля. Нисходящий путь начинается в слуховой коре и достигает верхнеоливарной области, откуда идет хорошо прослеживающийся оливоулитковый путь Расмуссена-Портмана, заканчивающийся на телах внутренних и наружных волосковых клеток крупными, "темными" нервными окончаниями. Афферентный путь берет начало в спиральном узле улитки, клеточная масса которого располагается в стержне улитки (modiolus). Из центральных отростков биполярных ганглиозных клеток формируется слуховой корешок VIII черепного нерва, а их дендриты в виде радиальных и спиральных волокон идут к чувствительным клеткам спирального органа (мелкие, "светлые" нервные окончания).
В слуховом ганглии различают три типа нейронов; дендриты первого из них имеют миелинизированную оболочку, а дендриты двух других лишены ее. Нейроны I типа иннервируют внутренние волосковые клетки (в пропорции 1:20), II и III типов - наружные волосковые клетки, причем каждый нейрон обоих типов связан с 10 чувствительными клетками. Таким образом, на уровне рецептора образуются иннервационные, частично накладывающиеся друг на друга поля, которые обеспечивают постоянство афферентации в случае дегенерации как отдельных волосковых, так и ганглиозных клеток.
Слуховые нейроны II порядка сосредоточены в группе кохлеарных ядер продолговатого мозга (переднее и заднее вентральные ядра и дорсальное улитковое ядро или слуховой бугорок). Именно на уровне второго нейрона перекрещивается основная масса волокон афферентного слухового пути, большая часть которых продолжает свой ход в составе трапециевидного тела и достигает верхней оливы. Меньшая часть волокон нейрона следует до нижних холмиков пластинки крыши двухолмия и даже медиального коленчатого тела.
Комплекс верхней оливы (третий слуховой нейрон), помимо латеральной и медиальной олив, включает скопление периоливарных ядер. На этом нейрональном уровне происходит конвергенция слуховых путей, подвергшихся и не подвергшихся ранее перекресту. Аксоны оливарных ядер и частично трапециевидного тела образует латеральную петлю (lemniscus lateralis), достигающую нижних холмиков пластинки крыши.
Нижние холмики пластинки крыши, или нижнее двухолмие, в основном содержат нейроны IV порядка, аксоны которых образуют пучок-ручку нижнего холмика (brachium colliculi inferiores), достигающий внутреннего коленчатого тела на ипсилатеральной стороне, однако часть волокон переходит и на контралатеральную сторону. Аксоны нейронов (V порядка) медиального коленчатого тела через слуховую радиацию достигают височной доли коры (у человека поля 41, 42 по Бродману), где имеется шесть слоев клеток. Для всех уровней нейронального восходящего пути, от ганглия до коры, характерна тонотопическая организация.
В опытах с разрушением отдельных звеньев афферентной слуховой дуги и при изучении суммарных электрических ответов ее различных отделов было установлено, что восприятие простых тонов (частоты, интенсивности) возможно уже на уровне кохлеарных ядер, оливарного комплекса и нижнего двухолмия (ромб- и мезэнцефалический уровни). В то же время перцепция сложных и коротких звуков и реализация механизмов тонкого обнаружения и различения сигналов (маскировка, пространственный слух, временная последовательность, память и др.) являются привилегией вышележащих отделов слуховой системы.
Функциональное значение нисходящего слухового пути изучено мало. Считают, что оливоулитковый путь оказывает тормозные влияния в слуховой системе, способствуя дифференцировке звуковых стимулов, уменьшению эффектов маскировки и др.
Задний лабиринт. Перепончатая улитка повторяет в основном все контуры костной, за исключением зоны канальца (водопровода) улитки (aqueductus cochleae), который соединяет барабанную лестницу с субарахноидальным пространством задней черепной ямки, перепончатый же лабиринт (labyrinthus membranaceus) вестибулярной части требует отдельного описания. В костном преддверии (vestibulum), занимающем центральное положение в лабиринте, имеются две ямки для перепончатых образований сферическое углубление (recessus sphericus) для сферического мешочка (sacculus) и эллиптическое углубление (recessus ellipticus) для эллиптического мешочка (utriculus). Оба мешочка соединены между собой протоком (ductus utriculosaccularis), который плавно переходит в эндо-лимфатический проток (ductus endolymphaticus). В свою очередь сферический мешочек соединен с улитковым протоком (ductus cochlearis) посредством соединяющего протока Гензена (ductus reuniens), а эллиптический мешочек-с тремя перепончатыми полукружными каналами (протоками) только пятью отверстиями. Это объясняется тем, что задний (сагиттальный, нижний) и передний (фронтальный, верхний) каналы сливаются, образуя одну ножку. Она, как и одна из ножек латерального (горизонтального, наружного) канала, названа простой в отличие от трех ампулярных ножек, имеющих на концах расширения - ампулы (ampullae osseae).
Эндолимфатический проток выходит из костного лабиринта через водопровод преддверия (aqueductus vestibuli), образуя на задней грани пирамиды височной кости емкое расширение - эндолимфатический мешок (seccus endolymphaticus). Анатомически все части перепончатого и костного лабиринтов связаны, однако их эндо- и перилимфатическое пространства разобщены. Эндолимфатический мешок играет роль основного резорбтивного органа для перепончатого лабиринта, регулирующего циркуляцию и давление эндолимфы, поэтому он стал объектом оперативных вмешательств при водянке (hydrops) внутреннего уха.
Вестибулярные рецепторные приборы делятся на отолитовые и ампулярные. Они имеют сходное строение, но значительно различаются в структурных деталях и тонких механизмах функциональной активности. Отолитовые рецепторы занимают область статических пятен эллиптического и сферического мешочков (maculae utriculi et sacculi). Отолитовые мембраны мешочков лежат во взаимно перпендикулярных плоскостях: мембрана эллептического мешочка - горизонтально, а сферического - сагиттально.
Нейроэпителий рецепторов представлен опорными и сенсорными элементами. Различают два типа сенсорных волосковых клеток. Клетки I типа (Верселля) имеют колбообразную, а II цилиндрическую форму. В апикальных областях тех и других клеток эксцентрично располагается одиночный отросток - киноцилия. К нему прилежит пучок стереоцилий. По мере удаления от киноцилии стереоцилии становятся короче.
Клетки I типа характеризуются усложненной синаптической организацией. Они почти целиком погружены в бокаловидную полость афферентного нервного окончания. Сравнительно небольшие, "темные" эфферентные окончания, наполненные синаптическими пузырьками, контактируют не прямо с телом клетки, а с поверхностью бокаловидных афферентов. У оснований цилиндрических (II тип) клеток в равной мере представлены небольшие по размерам, но многочисленные афферентные и эфферентные бутоны. В рецепторах отмечается перекрытие иннервации, когда клетки обоих типов иннервируются непосредственно одним волокном или его коллатералями. Макулы сферического и эллиптического мешочков содержат соответственно 7500 и 9000 клеток каждая.
Над цилиями сенсорных клеток макул нависает мембрана статоконий (membrana statoconiorum), ее желатинозное вещество пронизано сетью фибрилл, в петлях которых находятся конкреции кальцита. Пространственно волосковые клетки ориентированы в соответствии с их дирекционными функциональными свойствами, которые проявляются при тангенциальном смещении отолитов в результате действия прямолинейных ускорений или гравитационных сил. Каждая клетка способна отвечать возбуждением на смещение стереоцилий в сторону киноцилии и торможением при движении стереоцилий в противоположном направлении.
Ампулярные рецепторы локализованы на кристах ампул (cristae ampullares) трех полукружных протоков, которые расположены во взаимно перпендикулярных плоскостях. Каналы обоих лабиринтов, лежащие в одной плоскости, составляют функциональную пару. Плоскость латеральных каналов находится под углом 30° к горизонтали. Передний канал на одной стороне и задний на другой почти параллельны и лежат под углом примерно 45° к фронтальной плоскости. Таким образом, три функциональные пары каналов обеспечивают реакцию рецепторов на угловое ускорение в любой плоскости.
Ампулярные рецепторы, так же как и отолитовые, представлены опорными и сенсорными волосковыми клетками I и II типов, не имеющими существенных структурных отличий от аналогичных клеток в макулах мешочков преддверия. Общее количество сенсорных клеток трех ампулярных рецепторов примерно 16000-17000. Колпачок купулы (cupula), нависая над рецептором, простирается до противоположной стенки ампулы. Субкупулярное пространство, заполненное вязким секретом опорных клеток, пронизано стереоцилиями, вдающимися в же-латинообразное вещество самой купулы, где каждая стереоцилия лежит в отдельном узком канале. При движении эндолимфы и купулы возможны перемещение волосков относительно стенок желатинозных каналов и возникновение триггерных потенциалов.
Афферентный вестибулярный путь начинается с первого нейрона, который лежит на дне внутреннего слухового прохода (fundus meatus acustici interni) в преддверием узле (ganglion vestibulare). Ганглиозные биполярные клетки своими дендритами формируют ветви, иннервирующие волосковые клетки ампулярных крист и макул мешочков преддверия. Аксоны первого нейрона в составе вестибулярного корешка VIII черепного нерва вступают в области мостомозжечкового треугольника в продолговатый мозг, где оканчиваются на клетках вестибулярных ядер (второй нейрон).
Бульбарный вестибулярный комплекс включает четыре ядра: верхнее, латеральное, медиальное и нижнее. Вестибулярные ядра имеют связи с глазодвигательными ядрами, мозжечком, мотонейронами передних и боковых рогов спинного мозга, ядром блуждающего нерва, ретикулярной формацией, височной долей коры большого мозга. Широкие анатомические связи вестибулярного комплекса обусловливают возможность развития большого количества реакций при стимуляции вестибулярных рецепторов.
Эфферентный вестибулярный путь, оказывающий тормозное регулирующее влияние на рецепторный аппарат, начинается в основном от наружного ядра и заканчивается на сенсорных клетках вестибулярных рецепторов, проходя в составе преддверно-улиткового нерва.
Внутреннее
ухо получает питание от лабиринтной артерии
(a. labyrinthi), в большинстве случаев отходящей
от базальной артерии (a. basilaris). Венозный
отток из лабиринта осуществляется через
лабиринтные вены (w. labyrinthi) в нижний каменистый
синус, а далее в сигмовидный. Микроциркуляторное
русло внутреннего уха характеризуется
сегментарностью, высокой степенью развития
приспособительных демпферных механизмов,
обеспечивающих бесшумность кро0вотока,
и отсутствием анастомозов с сосудистой
системой среднего уха.
Физиология
уха
Слуховой анализатор
Адекватный раздражитель - звук.
Слуховой анализатор имеет 3 отдела:
Рецепторные клетки, воспринимающие звук, расположены глубоко в черепе, в самой плотной части человеческого скелета - пирамиде височной кости. Такое их положение легче объяснить с учетом филогенеза уха.
У некоторых насекомых и рыб слуховые нервные клетки находятся на поверхности тела ("слуховая линия" вдоль хребта) и, естественно, легко подвергаются воздействию неблагоприятных экзогенных (механических, химических, температурных) факторов.
В процессе филогенетического развития животного мира нежные, легко ранимые слуховые рецепторные клетки постепенно погружались в глубь черепа, одновременно развивался аппарат, с помощью которого звук может достигать звуковоспринимающих клеток без искажений и потерь, т.е. аппарат проведения звуков.
У птиц уже сформированы некоторые элементы среднего уха: небольшая полость, напоминающая барабанную у человека, и единственная слуховая косточка, называемая колумеллой.
К моменту рождения ребенка звукопроводящий аппарат, несмотря на то, что отличается от такового у взрослых по размерам и расположению некоторых деталей, уже полностью выполняет функцию проведения звука.
В состав звукопроводящего аппарата входят ушная раковина, наружный слуховой проход, барабанная перепонка, барабанная полость со слуховыми косточками и мышцами, слуховая труба, окна лабиринта и жидкость вестибулярной и барабанной лестниц улитки. Каждая часть имеет свое функциональное назначение, поэтому существует определенная зависимость между характером потери слуха и поражением каждого отдела. Остановимся более подробно на функциональном значении каждого отдела звукопроводящего аппарата.