Статистический анализ банковской деятельности

Автор: Пользователь скрыл имя, 15 Апреля 2012 в 15:38, дипломная работа

Описание работы

Невозможно гарантировать полное предупреждение всех кризисов, так как это форма проявления противоречий процесса развития и следствие множества факторов, часто находящихся вне финансовых рынков. Поэтому механизмы предупреждения кризисов должны служить не только для информирования, надзора и применения надлежащей практики по укреплению стабильности и предупреждению кризисов, но и рассмотрению различных вариантов развития кризисных ситуаций.

Содержание

Введение 3
Подходы к оценке кредитного риска 6
Недостатки методик Базеля II 8
Глава 1. Обзор моделей оценки кредитного риска 10
1.1.Понятие качества и прозрачности методик 10
1.2.Характеристики физического лица. Структура данных 13
Глава 2. Статистические и эконометрические методы оценки риска 15
2.1. Скоринговые методики 15
2.2. Кластерный анализ 17
2.3. Дискриминантный анализ 21
2.4. Дерево классификаций 25
2.5. Нейронные сети 26
2.6. Технологии Data mining 27
2.7. Линейная вероятностная регрессионная модель 28
2.8. Логистическая регрессия 33
Заключение 37
Литература 41

Работа содержит 1 файл

Статистический анализ банковской деятельности..doc

— 1.26 Мб (Скачать)

 

Среди преимуществ скоринговых систем западные банкиры указы­вают в первую очередь снижение уровня невозврата кредита. Далее отмечаются быстрота и беспристрастность в принятии решений, воз­можность эффективного управления кредитным портфелем, определе­ние оптимального соотношения между доходностью кредитных опера­ций и уровнем риска.

 

2.2. Кластерный анализ

 

Методы кластерного анализа позволяют разбить изучаемую совокупность объектов на группы однородных в некотором смысле объектов, называемых кластерами или классами. Иерархические и параллельные кластер-процедуры практически реализуемы лишь в задачах классификации не более нескольких десятков наблюдений. К решению задач с большим числом наблюдений (как в наших целях) применяют последовательные кластер-процедуры - это итерационные алгоритмы, на каждом шаге которых используется одно наблюдение (или небольшая часть исходных наблюдений) и результаты разбиения на предыдущем шаге. Идею этих процедур реализована в «SPSS» методе средних («K-Means Clustering») с заранее заданным числом классов.

Алгоритм заключается в следующем: выбирается заданное число k- точек и на первом шаге эти точки рассматриваются как "центры" кластеров. Каждому кластеру соответствует один центр. Объекты распределяются по кластерам по такому принципу: каждый объект относится к кластеру с ближайшим к этому объекту центром. Таким образом, все объекты распределились по k кластерам. Затем заново вычисляются центры этих кластеров, которыми после этого момента считаются покоординатные средние кластеров. После этого опять перераспределяются объекты. Вычисление центров и перераспределение объектов происходит до тех пор, пока не стабилизируются центры.

Если данные понимать как точки в признаковом пространстве, то задача кластерного анализа формулируется как выделение "сгущений точек", разбиение совокупности на однородные подмножества объектов.

При проведении кластерного анализа обычно определяют расстояние на множестве объектов; алгоритмы кластерного анализа формулируют в терминах этих расстояний. Мер близости и расстояний между объектами существует великое множество. Их выбирают в зависимости от цели исследования. В частности, евклидово расстояние лучше использовать для количественных переменных, расстояние хи-квадрат - для исследования частотных таблиц, имеется множество мер для бинарных переменных.

Меры близости отличаются от расстояний тем, что они тем больше, чем более похожи объекты.


 

 

 

 

 

 

Пусть имеются два объекта X=(X1,…,Xm) и Y=(Y1,…,Ym). (табл.4. ) Используя эту запись для объектов, определить основные виды расстояний, используемых процедуре CLUSTER:

                   Евклидово расстояние (Euclidian distance).

                   Квадрат евклидова расстояния (Squared Euclidian distance)

                   Эвклидово расстояние и его квадрат целесообразно использовать для анализа количественных данных.

                   Мера близости - коэффициент корреляции , где и компоненты стандартизованных векторов X и Y. Эту меру целесообразно использовать для выявления кластеров переменных, а не объектов. Расстояние хи-квадрат получается на основе таблицы сопряженности, составленной из объектов X и Y (таблица 4.), которые, предположительно, являются векторами частот. Здесь рассматриваются ожидаемые значения элементов, равные E(Xi)=X.*(Xi+Yi)/(X.+Y.) и E(Yi)=Y.*(Xi+Yi)/(X.+Y.), а расстояние хи-квадрят имеет вид корня из соответствующего показателя

 

.

                   Расстояние Фи-квадрат является расстоянием хи-квадрат, нормированным "число объектов" в таблице сопряженности, представляемой строками X и Y, т.е. на корень квадратный из N=X.+Y. .

Кластерный анализ является описательной процедурой, он не позволяет сделать никаких статистических выводов, но дает возможность провести своеобразную разведку - изучить "структуру совокупности".

Проведем кластеризацию по всем 20 признакам и всем наблюдениям. В результате работы программы выводится таблица 5. (показана лишь ее часть)

 

Таблица 5. Cluster Membership

Case Number

Y

Cluster

Distance

…………

……

…………

822

0

0

2985,732

823

1

0

2996,715

824

0

0

3040,706

825

1

0

3054,689

826

0

0

3099,727

827

1

0

3108,674

828

1

1

3100,310

829

1

1

3053,258

830

1

1

3043,285

831

1

1

2991,286

…………

……

………

…………


 

Столбец Y показывает, относится ли наблюдение к группе вернувших кредит “0” или навернувших “1”, столбец «Cluster» показывает принадлежность к той или иной группе наблюдения на основе кластеризации.

Таблица 6 указывает число наблюдений в том или ином кластере.

 


Таблица 6. Number of Cases in each Cluster

Cluster

1

822,000

 

0

178,000

Valid

1000,000

Missing

,000


 

Проанализируем качество классификации.

 

Таблица 7. Expectation-Predictable Table

 

Y=0

Y=1

всего

всего по выборке

300

700

1000

прогноз

178

822

1000

правильно

65

587

652

неправильно

235

113

348

% правильно

21,7%

83,9%

65,2%

% неправильно

78,3%

16,1%

34,8%


 

Из таблицы можно видеть, что видеть, что метод позволяет хорошо предугадывать плохие заемы на уровне 83,9%, но плохо предугадывает хорошие заемы – 21,7%. Обычно к методикам выдвигается требование распознавать лучше плохие заемы, т.к. потеря невозврата кредита больше потери неполучения процентов по кредиту.

 

2.3. Дискриминантный анализ

 

Кластерный анализ решает задачу классификации объектов при практически отсутствующей априорной информации о наблюдениях внутри классов; в дискриминантном анализе предполагается наличие такой информации. С помощью дискриминантного анализа на основании некоторых признаков (независимых переменных) индивидуум может быть причислен к одной из двух (или к одной из нескольких) заданных заранее групп. Ядром дискриминантного анализа является построение так называемой дискриминантной функция [2]

D=b1*x1+b2*x2+…+bn*xn+a

 

где х1 и х2 — значения переменных, соответствующих рассматриваемым случаям, константы x1 - xn и а — коэффициенты, которые и предстоит оценить с помощью дискриминантного анализа. Целью является определение таких коэффициентов, чтобы по значению дискриминантной функции можно было с максимальной четкостью провести разделение по группам.

Дискриминантный анализ является разделом многомерного статистического анализа, который позволяет изучать различия между двумя и более группами объектов по нескольким переменным одновременно. Цели ДА – интерпретация межгрупповых различий - дискриминация и методы классификации наблюдений по группам.

При интерпретации мы отвечаем на вопросы: возможно ли, используя данный набор переменных, отличить одну группу от другой, насколько хорошо эти переменные помогают провести дискриминацию, и какие из них наиболее информативны.

Методы классификации связаны с получением одной или нескольких функций, обеспечивающих возможность отнесения данного объекта к одной из групп. Эти функции называются классифицирующими.

Реализуем метод дискриминантного анализа в SPSS. Существует 2 алгоритма классификации:

1. Одновременный учет всех независимых переменных. Результаты представлены в таблице 8

 


Таблица 8. Classification Results(a)

 

 

Y

Predicted Group Membership

Total

 

 

 

0

1

 

Original

Count

0

218

82

300

 

 

1

188

512

700

 

%

0

72,7

27,3

100,0

 

 

1

26,9

73,1

100,0

Информация о работе Статистический анализ банковской деятельности