Автор: Пользователь скрыл имя, 23 Февраля 2013 в 13:33, научная работа
Цель работы - ознакомление с математическими моделями и методами моделирования экономических систем, развитие умений применять эти знания на практике.
ВВЕДЕНИЕ
1. СТОХАСТИЧЕСКИЕ МОДЕЛИ В ЭКОНОМИКЕ
2. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ СТОХАСТИЧЕСКИХ
МОДЕЛЕЙ В ЭКОНОМИКЕ
3. ОСНОВНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ
4. МАРКОВСКИЕ И СТАЦИОНАРНЫЕ ПРОЦЕССЫ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ВВЕДЕНИЕ |
3 | |
|
5 | |
МОДЕЛЕЙ В ЭКОНОМИКЕ |
1 | |
|
2 | |
ЗАКЛЮЧЕНИЕ |
3 | |
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ |
3 |
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
Математические модели и методы
моделирования экономических
Объектами исследования моделирования экономических систем являются любые экономические объекты. Математические модели экономических систем должны удовлетворять требованиям: адекватности, универсальности, полноты и простоты, должны соответствовать расчетным практическим формулам. Требованиям, предъявляемым к математическим моделям, наиболее соответствуют детерминированные, динамические, полные, теоретические непрерывные и дискретные модели.
История моделирования экономических
систем – это история имитационных
математических моделей, которые лишь
частично удовлетворяют предъявляемым
требованиям и не обладают познавательными
функциями. Неудовлетворенность степенью
выполнения предъявляемых требований
составляет основную проблему моделирования
экономики. Решение этой проблемы моделирования
экономики связано с развитием
и использованием функциональных математических
моделей и методов
- этап формирования и
- этап формирования и
Современные представления функционального
моделирования экономических
Цель работы - ознакомление с математическими моделями и методами моделирования экономических систем, развитие умений применять эти знания на практике.
Задачи работы:
- рассмотреть стохастические
- рассмотреть практическое применение стохастических моделей в экономике;
- рассмотреть основные законы распределения
- рассмотреть основные
В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ (упрощенное изображение) реального объекта (процесса), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием. Например, модель самолета продувают в аэродинамической трубе, вместо того, чтобы испытывать настоящий самолет – это дешевле. При теоретическом исследовании атомного ядра физики представляют его в виде капли жидкости, имеющей поверхностное натяжение, вязкость и т.п. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процесса). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процесса), хотя на самом деле действительность значительно содержательнее и богаче.
Стохастическая модель [stochastic model] – такая экономико-математическая модель, в которой параметры, условия функционирования и характеристики состояния моделируемого объекта представлены случайными величинами и связаны стохастическими (т. е. случайными, нерегулярными) зависимостями, либо исходная информация также представлена случайными величинами. Следовательно, характеристики состояния в модели определяются не однозначно, а через законы распределения их вероятностей. Моделируются, например, стохастические процессы в теории массового обслуживания, в сетевом планировании и управлении и в других областях. При построении стохастической модели применяются методы корреляционного и регрессионного анализов, другие статистические методы. Другие названия стохастической модели – недетерминированная, вероятностная модель.
Первая принципиальная идея, с которой встречается каждый изучающий экономист – идея о взаимосвязи между экономическими переменными. Формирующийся на рынке спрос на некоторый товар рассматривается как функция его цены; затраты, связанные с изготовлением какого-либо продукта, предполагаются зависящими от объема производства; потребительские расходы могут быть функцией дохода и т.д. Все это примеры связей между двумя переменными, одна из которых (спрос на товар, производственные затраты, потребительские расходы) играет роль объясняемой переменной (или результирующего показателя), а другие интерпретируются как объясняющие переменные (или факторы-аргументы). Однако для большей реалистичности в каждое такое соотношение приходится вводить несколько объясняющих переменных и остаточную случайную составляющую, отражающую влияние на результирующий показатель всех неучтенных факторов. Спрос на товар можно рассматривать как функцию его цены, потребительского дохода и цен на конкурирующие и дополняющие товары; производственные затраты будут зависеть от объема производства, от его динамики и от цен на основные производственные ресурсы; потребительские расходы можно определить как функцию дохода, ликвидных активов и предыдущего уровня потребления. При этом участвующая в каждом из этих соотношений случайная составляющая, отражающая влияние на анализируемый результирующий показатель всех неучтенных факторов, обусловливает стохастический характер зависимости, а именно: даже зафиксировав на определенных уровнях значения объясняющих переменных, скажем, цены на сам товар и на конкурирующие с ним или дополняющие товары, а также потребительский доход, мы не можем ожидать, что тем самым однозначно определяете спрос на этот товар. Другими словами, переходя в своих наблюдениях спроса от одного временного или пространственного такта к другому, мы обнаружим случайное варьирование величины спроса около некоторого уровня даже при сохранении значений всех объясняющих переменных неизменными.
Стохастическое моделирование
является в определенной степени
дополнением и углублением
В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:
а) наличие совокупности;
б) достаточный объем наблюдений;
в) случайность и независимость наблюдений;
г) однородность;
д) наличие распределения признаков, близкого к нормальному;
е) наличие специального математического аппарата.
Построение стохастической модели проводится в несколько этапов:
Стохастический анализ направлен
на изучение косвенных связей, т. е.
опосредованных факторов (в случае
невозможности определения
Стохастическое моделирование факторных систем взаимосвязей отдельных сторон хозяйственной деятельности опирается на обобщение закономерностей варьирования значений экономических показателей – количественных характеристик факторов и результатов хозяйственной деятельности. Количественные параметры связи выявляются на основе сопоставления значений изучаемых показателей в совокупности хозяйственных объектов или периодов. Таким образом, первой предпосылкой стохастического моделирования является возможность составить совокупность наблюдений, т. е. возможность повторно измерить параметры одного и того же явления в различных условиях.
В стохастическом анализе, где сама модель составляется на основе совокупности эмпирических данных, предпосылкой получения реальной модели является совпадение количественных характеристик связей в разрезе всех исходных наблюдений. Это означает, что варьирование значений показателей должно происходить в пределах однозначной определенности качественной стороны явлений, характеристиками которых являются моделируемые экономические показатели (в пределах варьирования не должно происходить качественного скачка в характере отражаемого явления). Значит, второй предпосылкой применяемости стохастического подхода моделирования связей является качественная однородность совокупности (относительно изучаемых связей).
Изучаемая закономерность изменения экономических показателей (моделируемая связь) выступает в скрытом виде. Она переплетается со случайными с точки зрения исследования (неизучаемыми) компонентами вариации и ковариации показателей. Закон больших чисел гласит, что только в большой совокупности закономерная связь выступает устойчивее случайного совпадения направления варьирования (случайной квариации). Из этого вытекает третья предпосылка стохастического анализа –достаточная размерность (численность) совокупности наблюдений, позволяющая с достаточной надежностью и точностью выявить изучаемые закономерности (моделируемые связи). Уровень надежности и точности модели определяется практическими целями использования модели в управлении производственно-хозяйственной деятельностью.
Четвертая предпосылка стохастического подхода – наличие методов, позволяющих выявить количественные параметры экономических показателей из массовых данных варьирования уровня показателей. Математический аппарат применяемых методов иногда предъявляет специфические требования к моделируемому эмпирическому материалу. Выполнение данных требований является важной предпосылкой применяемости методов и достоверности полученных результатов.
Информация о работе Использование показательного закона распределения в экономике