Вихревые горелки

Автор: Пользователь скрыл имя, 06 Сентября 2011 в 13:30, курсовая работа

Описание работы

Сильное влияние закрутки на инертные и реагирующие течения хорошо известно и изучается на протяжении многих лет. Когда эффект закрутки оказывается полезным, конструктор старается создать закрутку, наиболее подходящую для решения его задач; если же подобные эффекты нежелательны, конструктор предпринимает усилия для регулирования или устранения закрутки. Закрученные течения имеют широкий диапазон приложений.

Содержание

1. Характеристики закрученных потоков 3-8
2. Формирование закрученных течений 9-13
3. Топки, горелки и циклоны 14-19
4. Изменение структуры потока с увеличением закрутки 20-22
5. Структура рециркуляционной зоны 23-25
6. Вихревые горелки, прецессирующее вихревое ядро
в потоке с горением 26-27
7. Горение в закрученном потоке 28-31
8. Проектирование вихревых горелок 32-33
9. Список используемой литературы

Работа содержит 1 файл

Вихревые горелки.docx

— 744.68 Кб (Скачать)

      

      Рис.1.4 Закручивающее устройство с осевым и тангенциальным подводом. 

      При радиальном подводе воздуха к  закручивающему устройству радиальные и тангенциальные углы лопаток могут быть изменены на месте при реализации закручивающего устройства с адаптивным блоком, что в конечном итоге аналогично использованию тангенциального подвода. Система с адаптивным блоком эффективна в том случае, когда необходимо создать определенный уровень закрутки при относительно низком перепаде давления, поскольку при этом можно получить высокую интенсивность закрутки. В случае осевого течения в трубе закручивающее устройство или закручивающий лопаточный аппарат состоит из фиксированных лопаток с углом установки φ относительно направления основного потока. Эти лопатки отклоняют поток и придают ему вращательное движение. Такой метод используется в топках и газотурбинных камерах сгорания. Обычно лопатки устанавливаются на центральной втулке и располагаются в кольцевой области вокруг нее. С целью улучшения условий на выходе делались попытки использовать закручивающие устройства без втулок, однако срыв потока на лопатках обусловливает сложную картину течения и приводит к нарушению осевой симметрии. Закрутка может быть также создана непосредственным вращением потока. Так, в одном из экспериментов использовался цилиндр, вращающийся с частотой 9500 об/мин и создающий закрутку силами трения на стенке цилиндра, действующими на проходящий через него поток. Вследствие относительно низкой вязкости воздуха таким методом можно создать лишь небольшую закрутку. Силы трения могут быть значительно увеличены установкой во вращающую трубу перфорированных пластин, пучков труб или пористых дисков. На выходе из таких систем получаются профили скорости, соответствующие закрутке газа как целого, аналогично случаю увлечения частиц жидкости диском, вращающимся с постоянной угловой скоростью Ω. В вязкой жидкости вращающиеся течения (т.е. вихри) всегда содержат центральное ядро с вращением жидкости как целого (или вынужденный вихрь). Вне центральной области могут преобладать условия свободного (или потенциального) вихря, что наблюдается при образовании в атмосфере смерчей, пылевых бурь, торнадо, ураганов и циклонов. Огневые смерчи, возникающие при лесных и городских пожарах, могут быть смоделированы в лабораторных условиях вращением большого цилиндрического экрана из проволочной сетки над разлитым жидким горючим или над газовым факелом, когда пламя располагается по центральной вертикальной оси цилиндра.

      Для классификации и оценки этих типов  течений целесообразно рассмотреть движение жидкости в цилиндрических координатах. Предполагаются осевая симметрия и равенство нулю радиальной и осевой скоростей (u=v=0). Тогда единственной ненулевой компонентой скорости оказывается окружная, зависящая только от радиуса ω=f(r). Завихренность со определяется как ротор вектора скорости. В простом случае вращающейся жидкости, когда u=v=0 и скорость закрутки зависит только от радиуса г, завихренность равна

       ,

      т.е. отлична от нуля лишь x-компонента вектора ω. Во вращающихся течениях с распределением окружной скорости

      ω=c/r (1.11)

      завихренность равна нулю (со==0). Такие течения  являются потенциальными (безвихревыми) и называются потенциальными или свободными вихрями.

      Течения с вращением жидкости как целого имеют распределение скорости

      ω==c'r (1.12)

      и называются вынужденными вихрями. Ясно, что вектор ω в них отличен  от нуля и такие течения называются завихренными.

      В любом случае циркуляция Г вдоль  одной из концентрических траекторий вращательного движения определяется выражением Г = 2πrω, где ω не зависит от θ. Другим параметром является угловая скорость относительно центральной оси Ω = ω/r. Общие характеристики вихрей приведены в табл.1.1.

      Все три типа вихрей в реальных жидкостях  имеют центральное вихревое ядро с ненулевой завихренностью. Окружная скорость равна нулю на оси симметрии. Свободные и вынужденные вихри можно различить по радиальному положению максимума окружной скорости; т. е. в свободном вихре максимум расположен вблизи оси симметрии, в то время как в вынужденном вихре максимум находится на внешней границе вихря. Все величины для составного вихря Рэнкина (или свободно-вынужденного вихря) определяются выражениями для вынужденного вихря при малых r и выражениями для свободного вихря при больших r.

      Таблица 7.7.

      Общие характеристики вихрей

      Параметры       Вынужденный вихрь (вращение среды как целого)       Свободный (потенциальный) вихрь       Составной вихрь (вихрь Рэнкина)
      Окружная  скорость ω       ω=с’r       ω=C/r       
      Угловая скорость Ω       С’=const       C/r2 (функция радиуса)       Функция радиуса
      Циркуляция  Г       2πΩr2       2πC       
      Завихренность ω       4πΩ=const       0       
 

      При выборе закручивающего устройства решающим фактором является его эффективность, поскольку лишь часть падения давления на горелке переходит в кинетическую энергию получающегося закрученного струйного течения, остальная часть механической энергии теряется. Можно ввести параметр ν, называемый коэффициентом потока кинетической энергии кольцевого закрученного течения. Его значение зависит от типа созданного вихря, внешнего и внутреннего диаметров трубы.

      

      Рис.1.5. Коэффициент потока кинетической энергии  ν в кольцевом закрученном  течении в случае уравнения вихря ω = const rn.

      

      Рис. 1.6. Эффективность закрутки ε в  зависимости от параметра закрутки S для различных закручивающих устройств:

      1 - закручивающее устройство с  адаптивным блоком (R = 80 мм); 2 - закручивающее устройство с осевым и тангенциальным подводом; 3 - закручивающее устройство с направляющими лопатками (R = 62 мм).

       

      И от распределения окружной и осевой скоростей, которые могут не соответствовать вращению газа как целого. Значения ν для различных типов вихрей с ω = Сгn приведены на рис. 1.5. Можно видеть, что для любого заданного значения параметра закрутки вихрь при движении газа как целого (n=1) представляет собой случай минимума кинетической энергии, а свободный вихрь (n=-1) дает максимум кинетической энергии. Вихри с постоянной окружной скоростью (n=0) представляет собой промежуточный случай между вихрем с распределением   скорости, соответствующим движению газа как целого, и свободным вихрем, и в случае, когда момент количества движения в значительной степени сконцентрирован во внешней части потока (n=3), получаются значения ν, лишь незначительно превышающие значения, соответствующие движению газа как целого.

      Эффективность закрутки в при заданной интенсивности  закрутки представляет собой отношение кинетической энергии закрученного потока, протекающего через горло горелки, к падению статического давления между входным сечением и горлом. На рис.1.6 представлены экспериментальные значения ε для различных значений параметра закрутки S и различных типов закручивающих устройств.

      1. Закручивающее устройство с осевой  и тангенциальной подачей наиболее эффективно при малых интенсивностях закрутки, но малоэффективно при больших интенсивностях закрутки. Например, при S=1 его эффективность ε=40%. Столь низкая эффективность связана главным образом с большой площадью внутренней поверхности внутренней трубы горелки, особенно вверх по потоку от отверстия тангенциальной подачи.

      2. Закручивающее устройство с адаптивным  блоком имеет относительно низкую  эффективность при низкой и  средней интенсивности закрутки (ε=58% при S=0,4), но его эффективность остается неизменной и может даже повышаться при более высокой интенсивности закрутки.

      3. Закручивающий аппарат с радиальной  подачей потока имеет относительно  высокую эффективность (ε=75% при  S=1).

      4. Закручивающий аппарат с осевой  подачей имеет относительно низкую  эффективность (ε=30% при S=1).

      Эффективность закрутки представляет собой меру создания конкретной интенсивности закрутки S; это вовсе не мера эффективности создания определенного типа поля течения; это означает, что при одинаковой интенсивности закрутки различными типами закручивающих устройств (с различными профилями скорости на выходе) создаются разные поля течения вниз по потоку. 
 
 
 
 
 

      3. ТОПКИ, ГОРЕЛКИ  И ЦИКЛОНЫ 

      На  рис.1.30 приведен эскиз экспериментальной  топки Международной организации исследования горения (IFRF) с переменным отводом тепла, использованной для подробного экспериментального исследования гидродинамики и теплообмена. Топка имеет длину примерно 6,3 м и поперечное сечение 2Х2 м. Она состоит из 17 поперечных охлаждаемых водой секций. Горелка и труба расположены в центре торцевых поверхностей. Во время испытаний серии М-3 использовались две высокоскоростные туннельные горелки для природного газа, показанные на рис.1.31, в которых достигается полное сгорание на выходе из горелки. Продукты сгорания поступают в топку без закрутки и горизонтально или под углом 25° к горизонту. В предыдущих испытаниях в IFRF были исследованы пламени распыленной нефти и измельченного в порошок угля с закруткой. 

      

      Рис.1.30. Экспериментальная топка IFRF для  исследования теплообмена в серии испытаний М-3. 

      Существует  много различных типов топок - топка котла электростанции отличается, например, от топок в металлургической и обрабатывающей промышленностях. Топки играют важнейшую роль в современном обществе, и их эффективность и характеристики загрязнения среды могут привести к далеко идущим последствиям. Однако во всех случаях особенно важной является возможность управления пламенем с целью создания заданных распределений лучистого и конвективного теплообмена, полного сгорания, предотвращения шума, пульсации и чувствительности к изменениям свойств топлива. В большинстве топок пламени придается некоторая закрутка с целью повышения устойчивости, тогда как в некоторых других случаях, например в котлах с тангенциальной подачей топлива, потоки на входе направляются тангенциально к огневому ядру, образующемуся в центре камеры.

      

      Рис.1.31. Конструкции высокоскоростных туннельных горелок: а - горизонтальная; б - наклонная. 

      Тогда в камере с закруткой возникает  слабый эффект циклонного типа или  в результате получается циклонная камера с движением закрученного потока относительно геометрической оси оборудования. Важными конечными характеристиками процесса являются температура, распределение тепловых потоков на стенках и эффективность сгорания, и они непосредственно связаны с образованием загрязняющих веществ, таких, как сажа и оксиды азота. Конструктору и оператору необходимо знать, как эти параметры зависят от количества движения и угла подачи струй топлива, температуры предварительно подогретого воздуха и формы камеры. Ясно, что проблема моделирования очень сложна, она включает взаимодействие турбулентного горения многих химических компонент с многофазными процессами (частицы жидкого или твердого топлива и углерода в поле течения) и с лучистым теплопереносом. Как указывается в литературе, моделирование в той или иной степени включает распределение по размерам частиц (рассчитанное в диапазонах конечных размеров во всех точках области), потоковые или. зонные характеристики лучистого теплопереноса и данные о распределении сажи (сажа образуется в результате термического разложения углеводородов и ликвидируется окислением; оба процесса представляют собой сложную задачу химической кинетики).

      В случае турбулентных диффузионных пламен процесс сгорания определяется структурой потока и смешением. В обзоре обсуждаются методы расчета, основанные на законах подобия турбулентных струй, теории потока в гомогенном реакторе и на полных уравнениях в частных производных для турбулентного течения. При сгорании капель и частиц необходимо учитывать скорости гетерогенных реакций и требуется знать распределения частиц по размерам и в пространстве. Эмиссия загрязняющих веществ, таких, как углеводороды, сажа и оксиды азота, может быть уменьшена соответствующим управлением закономерностями изменения температуры и концентрации в области сгорания. В обзоре представлены также методы расчета лучистого потока тепла от пламени к тепловым стокам в порядке возрастающей сложности: модель с хорошим перемешиванием, модель длинной топки, многопотоковая модель и зонный метод анализа.

      Рассмотрим  теперь некоторые применения закрученных  течений: в горелках, вихревых устройствах и циклонах.

      Особый  случай представляют тороидальные горелки (рис.1.36), которые конструируются специально для достижения высокой интенсивности тепловыделения при высокой температуре в результате сжигания жидкого или газообразного топлива с непосредственным использованием кислорода. Продукты сгорания с высокой степенью диссоциации обеспечивают очень большие конвективные потоки тепла при рекомбинации на более холодных поверхностях; примеры их применения включают процессы рафинирования стали и меди при их производстве электродуговым методом или в мартеновских печах. В этих горелках иногда возникает неустойчивость, аналогичная встречающейся в ракетных двигателях. Для ракетных двигателей характерны три основных типа неустойчивости: неустойчивость в камере сгорания, неустойчивость системы и собственная неустойчивость. К первой категории относятся явления гидродинамической неустойчивости, возникающие во многих системах сгорания, но особенно в камерах сгорания твердотопливных и гибридных ракетных двигателей. Пример приведен на рис.1.37, где в определенной конструкции камеры сгорания, аналогичной тороидальной горелке, возникает гидродинамическая неустойчивость. Вблизи форсунки образуется тороидальный вихрь. Он захватывает горячие газообразные продукты сгорания, поступающий из форсунки окислитель, газообразное горючее из области поверхности горючего, соприкасающейся с вихрем. При критических условиях смесь этих газов воспламеняется и сгорает, создавая местное повышение давления, распространяющееся вниз по потоку. Этот процесс периодически повторяется.

Информация о работе Вихревые горелки