Великие ученые и их открытия: Жизнь и творчество Нильса Хенрика Давида Бора

Автор: p*******************@mail.ru, 28 Ноября 2011 в 15:24, курсовая работа

Описание работы

В своем выступлении на вечере памяти Нильса Бора в Политехническом музее в Москве 16 декабря 1962 года академик И. Е. Тамм сказал: "Бор не только был основателем квантовой теории, которая открыла человечеству путь к познанию нового мира - мира атомов и элементарных частиц - и тем самым проложила путь в атомный век и позволила овладеть атомной энергией. Труды Бора наряду с работами Эйнштейна оказали решающее влияние не только на физику нашего века, но и на современное научное мировоззрение в целом".

Содержание

Введение………………………………………………………………………….. 3
Глава 1. Физика XIX-XX вв.
1.1. Состояние науки в рассматриваемый период …………......................... 4
1.2. Предшественники Нильса Бора ………………………………………... 7
1.2.1. Становление «новой физики»……………………………………. 7
Глава 2. Биография Нильса Хенрика Давида Бора
2.1. Молодость. Теорема Бора — ван Лёвен ……………………………… 10
2.2. Бор в Англии. Теория Бора ……………………………………………. 12
2.3. Дальнейшее развитие теории. Принцип соответствия ……………… 17
2.4. Становление квантовой механики. Принцип дополнительности …... 20
2.5. Ядерная физика ………………………………………………………… 22
2.6. Противостояние нацизму. Война. Борьба против атомной угрозы … 25
2.7. Последние годы жизни ……………………………………………...… 27
Глава 3. Итоги научной деятельности
3.1. Научная школа Нильса Бора ………………………………………….. 29
3.2. Публикации …………………………………………………….………. 30
3.2.1. Книги ………………………………………………………….…. 30
3.2.2. Статьи ……………………………………………………………. 30
Заключение
1. Вклад в науку ………………………………………………………….…. 34
2. Память ……………………………………………………………………. 35
3. Награды …………………………………………………………………... 36
Список используемой литературы и источников …………………….……… 37

Работа содержит 1 файл

нильс бор.doc

— 1.34 Мб (Скачать)

     Работа  Бора сразу привлекла внимание физиков  и стимулировала бурное развитие квантовых представлений. Его современники по достоинству оценили важный шаг, который сделал датский учёный. Так, в 1936 Резерфорд писал:

    Я считаю первоначальную квантовую теорию спектров, выдвинутую Бором, одной из самых  революционных из всех когда-либо созданных  в науке; и я  не знаю другой теории, которая имела бы больший успех.

 

Нильс Бор и Альберт Эйнштейн

 

     В 1949 Альберт Эйнштейн так вспоминал о своих впечатлениях от знакомства с теорией Бора:

    Все мои попытки приспособить теоретические основы физики к этим результатам [то есть следствиям закона Планка для излучения чёрного тела] потерпели полную неудачу. Это было так, точно из-под ног ушла земля и нигде не было видно твёрдой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточным, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьём — найти главные законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли.

     Весной 1914 Бор был приглашён Резерфордом заменить Чарлза Дарвина, внука знаменитого естествоиспытателя, в качестве лектора по математической физике в Манчестерском университете (Шустеровская школа математической физики). Он оставался в Манчестере с осени 1914 до лета 1916. В это время он пытался распространить свою теорию на многоэлектронные атомы, однако скоро зашёл в тупик. Уже в сентябре 1914 он писал:

    Для систем, состоящих  из более чем двух частиц, нет простого соотношения между  энергией и числом обращений, и по этой причине соображения, подобные тем, которые  я использовал  ранее, не могут быть применены для  определения «стационарных  состояний» системы. Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем.

     В 1914 Бор сумел частично объяснить расщепление спектральных линий в эффектах Штарка и Зеемана, однако ему не удалось получить расщепление более чем на две компоненты. В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории. Преодолеть её стало возможно лишь после того, как в начале 1916 Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий, учтя релятивистские поправки. Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода.

2.3. Дальнейшее развитие теории. Принцип соответствия

     Летом 1916 Бор окончательно вернулся на родину и возглавил кафедру теоретической физики в Копенгагенском университете. В апреле 1917 он обратился к датским властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. 3 марта 1921, после преодоления множества организационных и административных трудностей, в Копенгагене был наконец открыт Институт теоретической физики, носящий ныне имя своего первого руководителя (институт Нильса Бора).

     Несмотря  на большую занятость административными  делами, Бор продолжал развивать свою теорию, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия, связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913, когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона. Начиная с 1918, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна, определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора (в частности, для гармонического осциллятора); дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений. Впоследствии Бор дал чёткую формулировку принципу соответствия:

    …«принцип соответствия», согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних.

     Принцип соответствия сыграл огромную роль и при построении последовательной квантовой механики. Именно из него исходил в 1925 Вернер Гейзенберг при построении своей матричной механики. В общефилософском смысле этот принцип, связывающий новые знания с достижениями прошлого, является одним из основных методологических принципов современной науки.

     В 19211923 в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов объяснение периодической системы Менделеева, представив схему заполнения электронных орбит (оболочек, согласно современной терминологии). Правильность интерпретации периодической таблицы была подтверждена открытием в 1922 нового элемента гафния Дирком Костером и Георгом Хевеши, работавшими в то время в Копенгагене. Как и предсказывал Бор, этот элемент оказался близок по своим свойствам к цирконию, а не к редкоземельным элементам, как думали ранее.

     В 1922 Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атома». В своей лекции «О строении атомов», прочитанной в Стокгольме 11 декабря 1922, Бор подвёл итоги десятилетней работы.

     Однако  было очевидно, что теория Бора в  своей основе содержала внутреннее противоречие, поскольку она механически  объединяла классические понятия и  законы с квантовыми условиями. Кроме  того, она была неполной, недостаточно универсальной, так как не могла быть использована для количественного объяснения всего многообразия явлений атомного мира. Например, Бору совместно с его ассистентом Хендриком Крамерсом так и не удалось решить задачу о движении электронов в атоме гелия (простейшей двухэлектронной системе), которой они занимались с 1916. Бор отчётливо понимал ограниченность существующих подходов (так называемой «старой квантовой теории») и необходимость построения теории, основанной на совершенно новых принципах:

    …весь подход к проблеме в целом носил ещё в высшей степени полуэмпирический характер, и вскоре стало совершенно ясно, что для исчерпывающего описания физических и химических свойств элементов необходим новый радикальный отход от классической механики, чтобы соединить квантовые постулаты в логически непротиворечивую схему.

2.4. Становление квантовой механики.

       Принцип дополнительности

 

Альберт Эйнштейн и Нильс Бор. Брюссель (1930)

 

     Новой теорией стала квантовая механика, которая была создана в 19251927 годах в работах Вернера Гейзенберга, Эрвина Шрёдингера, Макса Борна, Поля Дирака. Вместе с тем, основные идеи квантовой механики, несмотря на её формальные успехи, в первые годы оставались во многом неясными. Для полного понимания физических основ квантовой механики было необходимо связать её с опытом, выявить смысл используемых в ней понятий (ибо использование классической терминологии уже не было правомерным), то есть дать интерпретацию её формализма.

     Именно  над этими вопросами физической интерпретации квантовой механики размышлял в это время Бор. Итогом стала концепция дополнительности, которая была представлена на конгрессе памяти Алессандро Вольты в Комо в сентябре 1927. Исходным пунктом в эволюции взглядов Бора стало принятие им в 1925 дуализма волна — частица. До этого Бор отказывался признавать реальность эйнштейновских квантов света (фотонов), которые было трудно согласовать с принципом соответствия, что вылилось в совместную с Крамерсом и Джоном Слэтером статью, в которой было сделано неожиданное предположении о несохранении энергии и импульса в индивидуальных микроскопических процессах (законы сохранения принимали статистический характер). Однако эти взгляды вскоре были опровергнуты опытами Вальтера Боте и Ганса Гейгера.

     Именно корпускулярно-волновой дуализм был положен Бором в основу интерпретации теории. Идея дополнительности, развитая в начале 1927 во время отпуска в Норвегии, отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел. Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо. Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Следует отметить, что на формирование идей Бора, как он сам признавал, повлияли философско-психологические изыскания Сёрена Кьеркегора, Харальда Гёффдинга и Уильяма Джемса.

Информация о работе Великие ученые и их открытия: Жизнь и творчество Нильса Хенрика Давида Бора