Шпаргалка по "Анатомии"

Автор: Пользователь скрыл имя, 25 Марта 2012 в 23:19, шпаргалка

Описание работы

Работа содержит ответы на вопросы для экзамена по "Анатомии".

Работа содержит 1 файл

К ПЕЧАТИ АНАТОМИЯ.doc

— 2.59 Мб (Скачать)

23. составьте схему вегетативной рефлекторной дуги  , обозначьте её звенья.

Рефлекторные дуги некоторых рефлексов не имеют вставочных нейронов, например коленный рефлекс.

Схема рефлекторной дуги соматического (А) и вегетативного (Б) рефлексов.

1 - рецептор; 2 - чувствительный нейрон; 3 – тело чувствительного нейрона; 4 - двигательный нейрон; 5 - рабочий орган (мышца, железа); 6 – вставочный нейрон; 7 – тело двигательного нейрона; 8 – тело первого двигательного нейрона; 9 – белое вещество спинного мозга; 10 – серое вещество спинного мозга; В - вегетативный узел (место переключения первого двигательного нейрона на второй).

Рефлекторная дуга состоит из 5 звеньев:

1.      рецептор, воспринимающий внешние или внутренние воздействия; рецепторы преобразуют воздействующую энергию в энергию нервного импульса; рецепторы обладают очень высокой чувствительностью и специфичностью (определенные рецепторы воспринимают только определенный вид энергии)

2.      чувствительный (центростремительный, афферентный) нейрон, образованный чувствительным нейроном, по которому нервный импульс поступает в ЦНС

3.      вставочный нейрон, лежащий в ЦНС, по которому нервный импульс переключается на двигательный нейрон

4.      двигательный нейрон (центробежный, эфферентный), по которому нервный импульс проводится к рабочему органу, отвечающему на раздражение

5.      нервные окончания - эффекторы, передающие нервный импульс на рабочий орган (мышцу, железу др.)

24. сравните особенности строения и функции вегетативной и соматической рефлекторных дуг.

Соматическая нервная система

Вегетативная нервная система

Связь с органами однонейронная

Связь с органами двухнейронная: преганглионарный нейрон находится в центральной нервной системе, постганглионарный – в периферических ганглиях

Эффекторные нейроны находятся в центральной нервной системе

Эффекторные нейроны находятся на периферии (в ганглиях)

Эфферентные волокна идут только к скелетным мышцам

Эфферентные волокна иннервируют все органы, в том числе скелетные мышцы

Волокна выходят строго сегментарно, начиная от передних бугров четверохолмия среднего мозга и до конца спинного мозга

Волокна выходят из некоторых отделов центральной нервной системы: ядер среднего и продолговатого мозга, грудопоясничного отдела спинного мозга, крестцового отдела спинного мозга. Эти волокна называются преганглионарными; являются мякотными (миелинизированными), обеспечивают большую скорость проведения возбуждения

Волокна толстые, с большой скоростью проведения возбуждения (до 120 м/с); как правило, мякотные

Постганглионарные волокна тонкие, с малой скоростью проведения возбуждения (около 0,5 м/с), безмякотные (немиелинизированные)

Возбудимость высокая, быстро восстанавливается после возбуждения

Возбудимость низкая, медленно восстанавливается после возбуждения


25. Составьте схему строения спинно – мозгового сегмента , обозначьте его элементы.

Средний диаметр спинного мозга равен 1 см, однако в местах, где отходят спинномозговые нервы для конечностей образуются утолщения: шейное ( intumescentia cervicalis ) - на уровне С 5 -Th 2 сегментов и пояснично-крестцовое ( intumescentia lumbosacralis ) на уровне L 2 -S 2 сегментов. Всего на протяжении спинного мозга отходят 124 корешка (по 62 задних и передних). Из них формируется 31 пара спинномозговых нервов. По средней линии передней, или вентральной, поверхности спинного мозга идет передняя срединная щель – fissura mediana anterior ; по средине задней поверхности тянется поверхностная продольная борозда – sulcus medianus posterior . Этими двумя образованьями спинной мозг разделяется на две симметричные половины. По сторонам от sulcus medianus posterior , в каждой половине спинного мозга идет sulcus lateralis posterior , в которую вступают задняя корешковая нить. Кнаружи от fissura mediana anterior проходит sulcus lateralis anterior , которая не представляет истинной борозды. В верхней грудной и шейной частях между sulcus medianus posterior и sulcus lateralis posterior замкнута тонкая продольная бороздка – sulcus intermedius posterior . Выходящие из sulcus lateralis anterior передние корешковые нити образуют отдельные, разделенные промежутками пучочки, передние корешки – radices anteriores . Задние корешковые нити, расположенные в один ряд вдоль sulcus lateralis posterior , образуют, сходясь кнаружи, такие же пучочки, задние корешки – radices posteriores . Затем передний и задний корешковые пучки следуют вместе к определенному foramen intervertebrale . Здесь задний корешковый пучок образует небольшое утолщение – ganglion spinale . В дальнейшем оба корешка соединяются друг с другом, образуя смешанный спинномозговой нерв , который затем делится на переднюю и заднюю ветви. Отходящие от спинного мозга корешковые пучки направляются в сторону соответственного спинномозгового отверстия в теле позвонка

Соотношение между сегментами спинного мозга с выходящими из них корешками и телами позвонков (схема по М. М. Одинаку):

1 - задний корешок; 2 - передний корешок; 3 - шейные сегменты С 1 - С 8 ); 4 - грудные сегменты (Т 1 - Т 12 ); 5 - поясничные сегменты ( L 1 - L 5 ); 6 - крестцовые сегменты ( S 1 - S 5 ).                                                                                                                                                                   А так как скорость роста спинного мозга, отстает от скорости роста позвоночного столба, то корешковые пучки направляются еще и вниз, и тем больше вниз, чем ближе к хвостовому концу спинного мозга. Направление нервных корешков в поясничной части спинного мозга внутри позвоночного канала становится почти параллельным продольной оси спинного мозга, так, что conus medullaris и filum terminale оказываются лежащими среди густого пучка нервных корешков, и вследствие сходства с конским хвостом все образование получило название cauda equina .

Продольными бороздами разделяются следующие канатики спинного мозга :

        передний канатик – funiculus anterior – между fissura mediana anterior и sulcus lateralis anterior ;

        боковой канатик – funiculus lateralis – между sulcus lateralis anterior и sulcus lateralis posterior ;

        задний канатик – funiculus posterior – между sulcus medianus posterior и sulcus lateralis posterior , который разделяется посредством sulcus intermedius posterior на медиальный и латеральный канатики; медиальный канатик называется нежным пучком – fasciculus gracilis – , или пучок Голля , латеральный называется клиновидным пучком – fasciculus cuneatus –, или пучок Бурдаха .

26. Проведите сравнительный анализ  нейронов различных функциональных групп.

Следует с самого начала отметить, что почти все имеющиеся данные о работе нейронов мозговой коры получены на кроликах или кошках и лишь небольшая часть исследований проведена на обезьянах. Это означает, что эти данные имеют лишь самый первоначальный характер, и переносить их на человека можно лишь с очень большой осторожностью. Однако, несмотря на это, данные, полученные при исследовании на нейронном уровне, уже сейчас дают существенный материал, который может служить для выяснения общих принципов функциональной организации корковых центров и основных тенденций их развития.

Зрительная кора

Тщательные исследования первичной зоны зрительной коры, проведенные в лаборатории Юнга (1958, 1961), показали наличие разных типов нейронов, обнаруживаемых при применении диффузного света. Юнг выделил 5 основных типов: А — нейроны, не отвечающие на свет; В — отвечающие пачкой импульсов на включение света; С — отвечающие торможением на включение света; D — отвечающие на выключение света; E — отвечающие на включение и выключение света. Нейроны типа А, по данным Юнга, составляют примерно 50% всех нейронов зрительной коры. По данным других авторов, число нейронов, не отвечающих на диффузный засвет, еще больше.

Многие элементы первичной зрительной области отвечают на вестибулярные раздражения В этих случаях наблюдается конвергенция зрительных и вестибулярных влияний на один и тот же нейрон, причем вестибулярные влияния могут в значительной степени модулировать ответы на зрительные сигналыНаконец, следует указать еще один факт, наблюдавшийся многократно различными исследователями. Довольно большое число нейронов первичной зрительной области отвечает на звуковые, тактильные, обонятельные и болевые воздействия. Эти ответы более вариабельны, чем реакции на свет, имеют большие латентные периоды и часто конвергируют на нейроны, отвечающие на световые сигналы. Их функциональное значение не вполне ясно, можно только утверждать, что большинство из них не связано с ориентировочным рефлексом и вниманием, поскольку они сохраняют свою работу без тенденции к ослаблению при длительном применении сигнала.

Слуховая кора

В первичной слуховой зоне кошки на нейронном уровне отмечается наличие тонотопической организации, хотя данные разных авторов по этому вопросу не вполне согласуются между собой Во всяком случае несомненно одно: на клеточном уровне такая организация оказывается значительно более сложной, поскольку нейроны слуховой коры характеризуются не просто определенными звуковысотными параметрами, а значительно более сложными функциональными характеристиками, аналогично тому, как это было показано выше для нейронов зрительной коры.

Большинство нейронов в зоне Al отвечает на применяемые звуки (краткие или длительные) краткими фазическими реакциями на включение. Реже наблюдаются нейроны с тоническим типом ответа, реагирующие длительным повышением или снижением уровня активности в течение всего времени действия звука. Ряд нейронов имеет узкую оптимальную частоту1, не отвечает на другие сопредельные частоты или отвечает на них значительно слабее и при значительно более высоких порогах. Галамбосом и другими был, например, описан в слуховой коре кошки нейрон, отвечавший на тон 235 гц (но не на 234 или 236 гц), что говорит о чрезвычайной тонкости слухового анализа. Однако наиболее типичным для слуховой коры являются клетки с очень широкими полосами оптимальных частот, значительно превосходящими по широте параметры, характерные для клеток медиального коленчатого тела. Это, как считает Кацуки, говорит о том, что полный звуковысотный анализ, по всей вероятности, заканчивается на таламическом уровне, а кортикальные нейроны проекционной области служат уже интеграторами, на которые конвергируют несколько элементов медиального коленчатого тела. Это подтверждается и тем фактом, что в коре обнаруживаются клетки с несколькими пиками на кривой реактивности, т. е. с несколькими оптимальными частотами в разных участках звукочастотной шкалы, что никогда не наблюдается на низших уровнях слухового анализатора. Существенно, что в кортикальных нейронах Кацуки не наблюдал характерной для всей слуховой системы зависимости параметров ответа от интенсивности звука, описываемой S-образной кривой. Только очень резкие и сильные изменения звука могут отражаться на реакциях корковых нейронов (обычно подавляя их), изменения же интенсивности в пределах среднего диапазона не отражаются на ответах нейронов. Следовательно, функция интенсивности кодируется клетками низших уровней, а корковые нейроны имеют дело с выделением более информативных и тонких характеристик звука.

Реакции нейронов слуховой коры значительно усиливаются'при одновременном нанесении двух различных звуков. При этом особенно отчетливые ответы наблюдаются, если звуки находятся в гармоническом отношении (т. е. их частоты относятся как 1 :2, 1 :3 и т. д.) и образуют биения. В этих случаях краткие фазические ответы на включение тока превращаются в длительные ритмические реакции. Это явление Кацуки связывает с восприятием на уровне коры сложных тембровых характеристик звука. 10% нейронов слуховой коры отвечает только на частотно-модулированные тоны. При этом многие из них имеют частотную ориентацию, т. е. отвечают только при повышении или только при снижении частоты тона.

1 «Оптимальная частота» — понятие, соответствующее «рецептивному полю» в зрительном и соместетическом анализаторах — частота, вызывающая максимальный ответ нейрона при наименьшем пороге.

Конечно, в области слуха еще более трудно делать выводы из данных, полученных на животных, но описанные факты позволяют считать, что отдельные нервные элементы, которые уже у кошки могут выделять столь многообразные и сложные характеристики звука, у человека могут дифференцироваться далее для анализа отдельных фонем и сложных акустических параметров речевых звуков. Галамбосом и др. (1958) описана в первичной слуховой коре кошки группа нейронов (около 10%), отвечавших только на сложные значимые звуки (зов, мяуканье, писк мыши). Правда, эти данные можно интерпретировать самым различным образом — не обязательно как результат специфической кортикальной интеграции, но как следствие конвергенции влияний от активирующих и «эмоциональных» систем (неспецифический таламус, лимбические образования) на данные нейроны.

Основным нейронам слуховой коры с их достаточно широкими частотными характеристиками, по данным Кацуки, присуща анатомическая, организация в вертикальные столбики с одинаковыми функциональными свойствами. Здесь также обнаружены отдельные элементы, отвечающие на раздражители незвуковых модальностей.

Соматосенсорная кора

Задне-центральная кора в области, соответствующей соматотопиче-ской проекции соматической чувствительности, исследовалась на кошках и обезьянах Маунткаслом с сотр. (1957, 1959, 1966). Эту область в основном занимают элементы с локальными рецептивными полями и достаточно четким соматотопическим расположением. Рецептивные поля иногда могут быть очень ограниченными (2—8 см2 на периферии), однако, как правило, рецептивные поля в коре в 15—100 раз больше полей соматических афферентных нейронов первого порядка. Подавляющее большинство элементов этой корковой области отвечает только на раздражение контралатеральной половины тела. Возбуждающее рецептивное поле таких нейронов окружено зоной, часто довольно сложной и неправильной конфигурации, с которой можно вызвать подавление ответа клетки на стимуляцию центра рецептивного поля. В области, лежащей кпереди от соматосенсорной зоны, на переходе к моторной коре передней части полушария, постепенно нарастает число нейронов с огромными диффузными рецептивными полями — о твет этих клеток часто можно вызвать со всех четырех конечностей или со всей половины тела, причем гомолатеральные и контралатеральные раздражения конвергируют на один нейрон. Латентные периоды здесь больше, а сами поля лабильнее, чем в ядре соматического анализатора. Эти нейроны могут рассматриваться как интеграторы полей нейронов ядерной зоны.

Характеристики соматических нейронов не исчерпываются, однако, их топическим представительством. Некоторые клетки отвечают только на раздражители определенных субмодальностей: на прикосновение к коже, потягивание за волоски, давление на глубокие ткани, смещение конечности в суставе. При этом раздражения разных модальностей могут находиться в реципрокных отношениях, и ответ на одну субмодальность (прикосновение) может подавляться иным раздражением того же рецептивного поля (давление). Маунткасл обнаружил в опытах на обезьянах преимущественное расположение основных субмодальностей по цитоархитектоническим полям (поле 3 — кожная чувствительность; поле 2 — глубокая чувствительность; поле 1 — переход между ними).

Информация о работе Шпаргалка по "Анатомии"