Автор: Пользователь скрыл имя, 21 Февраля 2012 в 20:55, курсовая работа
Целью транспортной задачи является обеспечение получения (доставки) продукции (товара) потребителю в нужное время и место при минимально возможных совокупных затратах трудовых, материальных, финансовых ресурсов.
Цель транспортной деятельности считается достигнутой при выполнении шести условий:
нужный товар;
необходимого качества;
в необходимом количестве доставлен;
a4 = 0,
b4 = 6, так как a4 + b4 = С44 = 6,
a1= 0, так как a1 + b4 = С14 = 6,
b3 = 5, так как a1 + b3 = С13 = 5,
b1 = 7, так как a4 + b1 = С41 = 7,
a2= - 1, так как a2 + b1 = С21 = 6,
b5 = 6, так как a2 + b5 = С25 = 5,
a3= 1, так как a3 + b5 = С35 = 7,
b2 = 6, так как a3 + b2 = С25 = 7.
Если оказалось, что все эти псевдостоимости не превосходят стоимостей čij £ сij, £ ³ то план потенциален и, значит, оптимален. Если же хотя бы в одной свободной клетке псевдостоимость больше стоимости (как в нашем примере), то план не является оптимальным и может быть улучшен переносом перевозок по циклу, соответствующему данной свободной клетке. Цена этого цикла ровна разности между стоимостью и псевдостоимостью в этой свободной клетке. В таблице № 5 мы получили в двух клетках čij ³ сij, теперь можно построить цикл в любой из этих двух клеток. Выгоднее всего строить цикл в той клетке, в которой разность čij - сij максимальна. В нашем случае в обоих клетках разность одинакова (равна 1), поэтому, для построения цикла выберем, например, клетку (4,2):
Таблица №6
ПН ПО | В1 | В2 | В3 | В4 | В5 | ai |
А1 | 10 | 8 | 5 42 | 6 6 | 9 | 0 |
А2 | 6 + 4 | 7 | 8 | 6 | 5 - 26 | -1 |
А3 | 8 | 7 - 27 | 10 | 8 | 7 + 0 | 1 |
А4 | 7 - 14 | 5 + û | 4 | 6 6 | 8 | 0 |
bj | 7 | 6 | 5 | 6 | 6 |
|
Теперь будем перемещать по циклу число 14, так как оно является минимальным из чисел, стоящих в клетках, помеченных знаком - . При перемещении мы будем вычитать 14 из клеток со знаком - и прибавлять к клеткам со знаком +. После этого необходимо подсчитать потенциалы ai и bj и цикл расчетов повторяется.
Итак, мы приходим к следующему алгоритму решения транспортной задачи методом потенциалов.
1. Взять любой опорный план перевозок, в котором отмечены m +n - 1 базисных клеток (остальные клетки свободные).
2. Определить для этого плана платежи (ai и bj) исходя из условия, чтобы в любой базисной клетке псевдостоимости были равны стоимостям. Один из платежей можно назначить произвольно, например, положить равным нулю.
3. Подсчитать псевдостоимости či,j = ai + bj для всех свободных клеток. Если окажется, что все они не превышают стоимостей, то план оптимален.
4. Если хотя бы в одной свободной клетке псевдостоимость превышает стоимость, следует приступить к улучшению плана путём переброски перевозок по циклу, соответствующему любой свободной клетке с отрицательной ценой (для которой псевдостоимость больше стоимости).
5. После этого заново подсчитываются платежи и псевдостоимости, и, если план ещё не оптимален, процедура улучшения продолжается до тех пор, пока не будет найден оптимальный план. Так в нашем примере после 2 циклов расчетов получим оптимальный план. При этом стоимость всей перевозки изменялась следующим образом: F0 = 723, F1 = 709, F2 = Fmin = 703.
Следует отметить так же, что оптимальный план может иметь и другой вид, но его стоимость останется такой же Fmin = 703.
Составьте оптимальный план перевозки угля с минимальными транспортными расходами с шахт Варгашорская (В), Западная (З) и Комсомольская (К), еженедельно добывающих соответственно 26,32 и 17тыс. т. Покупатели угля расположены в разных городах В, В, С и D, заявки которых составляют 28, 19, 12 и 16 тыс. т между поставщиками и потребителями представлены транспортной таблицей.
Шахты | Потребители | Добыча угля, тыс. тонн в неделю | |||
A | B | C | D | ||
Западная | 70 | 76 | 72 | 68 | 32 |
Варгашорская | 80 | 84 | 82 | 77 | 26 |
Комсомольская | 80 | 83 | 82 | 76 | 17 |
Заявки, тыс. тонн | 28 | 19 | 12 | 16 |
|
Решение:
Математическая модель данной задачи имеет вид:
F = 70х11+76х12+72х13+68х14+80х21+
Экранная форма для ввода условий задачи вместе с введенными в нее исходными данными представлена на рисунке:
При введении зависимостей лист MS Excel в режиме просмотра формул имеет вид:
После отражения закономерностей экранная форма принимает вид:
Окно "Поиск решения" после ввода всех необходимых данных задачи имеет следующий вид:
Оптимальное решение задачи в экранной форме имеет вид:
Минимальные транспортные расходы на перевозку угля равны 5715.
В курсовой работе изложены основные подходы и методы решения транспортной задачи, являющейся одной из наиболее распространенных задач линейного программирования. Решение данной задачи позволяет разработать наиболее рациональные пути и способы транспортирования товаров, устранить чрезмерно дальние, встречные, повторные перевозки. Все это сокращает время продвижения товаров, уменьшает затраты предприятий и фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.
Алгоритм и методы решения транспортной задачи могут быть использованы при решении некоторых экономических задач, не имеющих ничего общего с транспортировкой груза. В этом случае величины тарифов cij имеют различный смысл в зависимости от конкретной экономической задачи. К таким задачам относятся следующие: оптимальное закрепление за станками операций по обработке деталей. В них cij является таким экономическим показателем, как производительность. Задача позволяет определить, сколько времени и на какой операции нужно использовать каждый из станков, чтобы обработать максимальное количество деталей. Так как транспортная задача требует нахождения минимума, то значения cij берутся с отрицательным знаком; оптимальные назначения, или проблема выбора. Имеется m механизмов, которые могут выполнять m различных работ с производительностью cij. Задача позволяет определить, какой механизм и на какую работу надо назначить, чтобы добиться максимальной производительности; задача о сокращении производства с учетом суммарных расходов на изготовление и транспортировку продукции; увеличение производительности автомобильного транспорта за счет минимизации порожнего пробега. Уменьшение порожнего пробега сократит количество автомобилей для перевозок, увеличив их производительность; решение задач с помощью метода запрещения перевозок. Используется в том случае, если груз от некоторого поставщика по каким-то причинам не может быть отправлен одному из потребителей. Данное ограничение можно учесть, присвоив соответствующей клетке достаточно большое значение стоимости, тем самым в эту клетку не будут производиться перевозки. Таким образом, важность решения данной задачи для экономики несомненна. Приятно осознавать, что у истоков создания теории линейного программирования и решения, в том числе и транспортной задачи, стоял русский ученый - Леонид Витальевич Канторович.
1. Еремин И.И., Астафьев Н.Н. Введение в теорию линейного и выпуклого программирования М.; Наука, 1976 г.
2. Карманов В.Г. Математическое программирование. - М.; Наука, 1986г.
3. Моисеев Н.Н., Иванов Ю.П., Столярова Е.М. Методы оптимизации. - М.; Наука, 1978г.
4. Иванов Ю.П., Лотов А.В. Математические модели в экономике. - М.; Наука, 1979г.
5. Бронштейн И.Н., Семендяев К.А. Справочник по математике. - М.; Наука, 1986г
Информация о работе Транспортная задача. Применение транспортных моделей