Транспортная задача. Применение транспортных моделей

Автор: Пользователь скрыл имя, 21 Февраля 2012 в 20:55, курсовая работа

Описание работы

Целью транспортной задачи является обеспечение получения (доставки) продукции (товара) потребителю в нужное время и место при минимально возможных совокупных затратах трудовых, материальных, финансовых ресурсов.
Цель транспортной деятельности считается достигнутой при выполнении шести условий:
нужный товар;
необходимого качества;
в необходимом количестве доставлен;

Работа содержит 1 файл

Курсовая работа.doc

— 403.50 Кб (Скачать)

 

a4 = 0,

b4 = 6, так как a4 + b4 = С44 = 6,

a1= 0, так как a1 + b4 = С14 = 6,

b3 = 5, так как a1 + b3 = С13 = 5,

b1 = 7, так как a4 + b1 = С41 = 7,

a2= - 1, так как a2 + b1 = С21 = 6,

b5 = 6, так как a2 + b5 = С25 = 5,

a3= 1, так как a3 + b5 = С35 = 7,

b2 = 6, так как a3 + b2 = С25 = 7.

 

Если оказалось, что все эти псевдостоимости не превосходят стоимостей čij £ сij, £ ³ то план потенциален и, значит, оптимален. Если же хотя бы в одной свободной клетке псевдостоимость больше стоимости (как в нашем примере), то план не является оптимальным и может быть улучшен переносом перевозок по циклу, соответствующему данной свободной клетке. Цена этого цикла ровна разности между стоимостью и псевдостоимостью в этой свободной клетке. В таблице № 5 мы получили в двух клетках čij ³ сij, теперь можно построить цикл в любой из этих двух клеток. Выгоднее всего строить цикл в той клетке, в которой разность čij - сij максимальна. В нашем случае в обоих клетках разность одинакова (равна 1), поэтому, для построения цикла выберем, например, клетку (4,2):

 

 

 

Таблица №6

ПН

ПО

В1

В2

В3

В4

В5

ai

А1

10

8

5

42

6

6

9

0

А2

6 +

4

7

8

6

5 -

26

-1

А3

8

7 -

27

10

8

7 +

0

1

А4

7 -

14

5 +

û

4

6

6

8

0

bj

7

6

5

6

6

 


 

Теперь будем перемещать по циклу число 14, так как оно является минимальным из чисел, стоящих в клетках, помеченных знаком - . При перемещении мы будем вычитать 14 из клеток со знаком - и прибавлять к клеткам со знаком +. После этого необходимо подсчитать потенциалы ai и bj и цикл расчетов повторяется.

Итак, мы приходим к следующему алгоритму решения транспортной задачи методом потенциалов.

1. Взять любой опорный план перевозок, в котором отмечены m +n - 1 базисных клеток (остальные клетки свободные).

2. Определить для этого плана платежи (ai и bj) исходя из условия, чтобы в любой базисной клетке псевдостоимости были равны стоимостям. Один из платежей можно назначить произвольно, например, положить равным нулю.

3. Подсчитать псевдостоимости či,j = ai + bj для всех свободных клеток. Если окажется, что все они не превышают стоимостей, то план оптимален.

4. Если хотя бы в одной свободной клетке псевдостоимость превышает стоимость, следует приступить к улучшению плана путём переброски перевозок по циклу, соответствующему любой свободной клетке с отрицательной ценой (для которой псевдостоимость больше стоимости).

5. После этого заново подсчитываются платежи и псевдостоимости, и, если план ещё не оптимален, процедура улучшения продолжается до тех пор, пока не будет найден оптимальный план. Так в нашем примере после 2 циклов расчетов получим оптимальный план. При этом стоимость всей перевозки изменялась следующим образом: F0 = 723, F1 = 709, F2 = Fmin = 703.

Следует отметить так же, что оптимальный план может иметь и другой вид, но его стоимость останется такой же Fmin = 703.

Составьте оптимальный план перевозки угля с минимальными транспортными расходами с шахт Варгашорская (В), Западная (З) и Комсомольская (К), еженедельно добывающих соответственно 26,32 и 17тыс. т. Покупатели угля расположены в разных городах В, В, С и D, заявки которых составляют 28, 19, 12 и 16 тыс. т между поставщиками и потребителями представлены транспортной таблицей.

 

Шахты

Потребители

Добыча угля,

тыс. тонн в неделю

A

B

C

D

Западная

70

76

72

68

32

Варгашорская

80

84

82

77

26

Комсомольская

80

83

82

76

17

Заявки, тыс. тонн

28

19

12

16

 


 

Решение:

Математическая модель данной задачи имеет вид:

 

F = 70х11+76х12+72х13+68х14+80х21+84х22 +82х23+77х24+80х9+83х10 +82х11+76х12 →min

 

Экранная форма для ввода условий задачи вместе с введенными в нее исходными данными представлена на рисунке:

 

 

При введении зависимостей лист MS Excel в режиме просмотра формул имеет вид:

 

 

После отражения закономерностей экранная форма принимает вид:

 

 

Окно "Поиск решения" после ввода всех необходимых данных задачи имеет следующий вид:

 

 

Оптимальное решение задачи в экранной форме имеет вид:

 

 

Минимальные транспортные расходы на перевозку угля равны 5715.

 


Заключение

 

В курсовой работе изложены основные подходы и методы решения транспортной задачи, являющейся одной из наиболее распространенных задач линейного программирования. Решение данной задачи позволяет разработать наиболее рациональные пути и способы транспортирования товаров, устранить чрезмерно дальние, встречные, повторные перевозки. Все это сокращает время продвижения товаров, уменьшает затраты предприятий и фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.

Алгоритм и методы решения транспортной задачи могут быть использованы при решении некоторых экономических задач, не имеющих ничего общего с транспортировкой груза. В этом случае величины тарифов cij имеют различный смысл в зависимости от конкретной экономической задачи. К таким задачам относятся следующие: оптимальное закрепление за станками операций по обработке деталей. В них cij является таким экономическим показателем, как производительность. Задача позволяет определить, сколько времени и на какой операции нужно использовать каждый из станков, чтобы обработать максимальное количество деталей. Так как транспортная задача требует нахождения минимума, то значения cij берутся с отрицательным знаком; оптимальные назначения, или проблема выбора. Имеется m механизмов, которые могут выполнять m различных работ с производительностью cij. Задача позволяет определить, какой механизм и на какую работу надо назначить, чтобы добиться максимальной производительности; задача о сокращении производства с учетом суммарных расходов на изготовление и транспортировку продукции; увеличение производительности автомобильного транспорта за счет минимизации порожнего пробега. Уменьшение порожнего пробега сократит количество автомобилей для перевозок, увеличив их производительность; решение задач с помощью метода запрещения перевозок. Используется в том случае, если груз от некоторого поставщика по каким-то причинам не может быть отправлен одному из потребителей. Данное ограничение можно учесть, присвоив соответствующей клетке достаточно большое значение стоимости, тем самым в эту клетку не будут производиться перевозки. Таким образом, важность решения данной задачи для экономики несомненна. Приятно осознавать, что у истоков создания теории линейного программирования и решения, в том числе и транспортной задачи, стоял русский ученый - Леонид Витальевич Канторович.


Список используемой литературы

 

1.                  Еремин И.И., Астафьев Н.Н. Введение в теорию линейного и выпуклого программирования М.; Наука, 1976 г.

2.                  Карманов В.Г. Математическое программирование. - М.; Наука, 1986г.

3.                  Моисеев Н.Н., Иванов Ю.П., Столярова Е.М. Методы оптимизации. - М.; Наука, 1978г.

4.                  Иванов Ю.П., Лотов А.В. Математические модели в экономике. - М.; Наука, 1979г.

5.                  Бронштейн И.Н., Семендяев К.А. Справочник по математике. - М.; Наука, 1986г

 



Информация о работе Транспортная задача. Применение транспортных моделей