Автор: Пользователь скрыл имя, 27 Декабря 2011 в 13:02, контрольная работа
Статор синхронной машины имеет такое же устройство, как и статор асинхронной машины. Трехфазная или в общем случае m-фазная обмотка машины выполняется с таким же числом полюсов, как и ротор, и называется так же обмоткой. Сердечник ротора вместе с обмоткой называется также якорем. На рис. условно показаны только выводные концы А, В, С обмотки статора.
Как уже указывалось в синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность
В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.
Для этого каждый синхронный компенсатор снабжается автоматическим-регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается/постоянным.
Синхронные компенсаторы лишены приводных двигателей и с точки зрения режима своей работы в сущности являются синхронными двигателями, работающими на холостом ходу.
Для осуществления асинхронного пуска все синхронные компенсаторы снабжаются пусковыми обмотками в полюсных наконечниках или их полюсы делаются массивными. При этом используется способ прямого, а в необходимых случаях — способ реакторного пуска. В некоторых случаях мощные компенсаторы пускаются в ход также с помощью пусковых фазных асинхронных двигателей, укрепляемых с ними на одном валу. Для синхронизации с сетью при этом обычно используется метод самосинхронизации.
Так как синхронные компенсаторы не развивают активной мощности, то вопрос о статической устойчивости работы для них теряет остроту. Поэтому они изготовляются с меньшим воздушным зазором, чем генераторы и двигатели, Уменьшение зазора позволяет облегчить обмотку возбуждения и удешевить машину.
Номинальная полная мощность синхронного компенсатора
соответствует его работе с перевозбуждением. Наибольшие значения тока и мощности в недовозбужденном режиме получаются при работе в реактивном режиме с if = 0 и Е = 0. Если пренебречь потерями, то,
полная мощность
В большинстве случаев в недовозбужденном режиме требуются меньшие мощности, чем в перевозбужденном, но в некоторых случаях необходима большая мощность. Этого можно достигнуть увеличением зазора, однако это приводит к удорожанию машины, и поэтому в последнее время ставится вопрос об использовании режима с отрицательным током возбуждения. Поскольку синхронный компенсатор по активной мощности загружен только потерями, то, согласно он может работать устойчиво также с небольшим отрицательным возбуждением.
В ряде случаев в маловодные периоды для работы в режиме компенсаторов используются также генераторы гидроэлектростанций.
Обмотка статора синхронных генераторов обычно включается в звезду, причем нулевая точка в малых машинах изолирована, а в крупных машинах с целью выполнения релейной защиты от замыкании на землю заземляется через большое сопротивление. Поэтому токи нулевой последовательности либо отсутствуют, либо весьма невелики.
В силу этого при несимметричной нагрузке синхронных генераторов, кроме токов прямой последовательности, практически существуют только токи обратной последовательности.
Последние вызывают в машине ряд нежелательных явлений и делают режим работы машины тяжелым.
Токи двойной частоты, индуктируемые в роторе магнитным полем статора обратной последовательности, вызывают в роторе излишние потери и его нагрев, а также уменьшение к.п.д. машины.
Токи, индуктируемые обратным полем в успокоительных обмотках явнополюсных машин и в массивном роторе турбогенераторов, могут быть весьма значительными, а активные сопротивления этим токам под влиянием поверхностного эффекта будут большими.
Поэтому при значительной несимметрии нагрузки возникает чрезмерный и опасный нагрев успокоительных обмоток и массивных роторов.
Высокая
температура тела ротора турбогенератора
вызывает опасные деформации ротора
и вероятность повреждения
Токи, индуктируемые обратным полем в обмотке возбуждения, меньше из-за большего сопротивления рассеяния этой обмотки. Поэтому в явнополюсных машинах дополнительный нагрев обмотки возбуждения при несимметричной нагрузке невелик.
В результате взаимодействия потока возбуждения и потока обратной последовательности статора, а также поля прямой последовательности статора и поля токов двойной частоты ротора при несимметричной нагрузке на ротор и статор действуют знакопеременные вращающие моменты и тангенциальные силы, пульсирующие с частотой
Кроме того, вследствие этих же причин возникают пульсирующие радиальные силы притяжения и отталкивания между полюсами полей статора и ротора, стремящиеся деформировать статор и ротор. Эти силы вызывают вибрацию частей машины, шум и ослабление запрессовки сердечника статора. Пульсирующие силы двойной частоты ввиду усталостных явлений могут также вредно отразиться на прочности сварных соединений, в особенности при наличии дефектов сварки. Все указанные факторы, естественно, тем сильнее, чем больше несимметрия нагрузки.
Искажение симметрии напряжении. Токи обратной последовательности вызывают в фазах обмотки статора падения напряжения
Z2I2 векторы которых ориентированы относительно напряжений прямой последовательности в разных фазах по разному.
В результате этого симметрия напряжений генератора искажается и напряжения более загруженных фаз будут меньше. Это ухудшает условия работы приемников, в особенности асинхронных и синхронных двигателей.
В
машинах с успокоительными
Высшие гармоники токов и напряжении. Как было установлено выше, ввиду неравенства сопротивлений по продольной и поперечной осям возникает третья гармоника тока с частотой 3f1. В особенности сильное искажение формы кривой тока происходит при несиммитричных коротких замыканиях, так как при этом сглаживающее влияние внешних индуктивных сопротивлений исчезает или ослабляется. В качестве примера на рис. изображена форма кривой тока при двухфазном коротком замыкании.
Высшие гармоники ток» могут вызвать опасные резонансные явления, если в цепях обмоток статора имеются емкости (например, емкость длинных линий передачи и пр.).
В
результате резонанса напряжений на
зажимах обмотки статора
Допустимая несимметрия нагрузки ограничивается прежде всего необходимостью предотвращения опасного нагрева ротора, а также вибрации машины.
При колебаниях или качаниях синхронной машины ее ротор вращается неравномерно я скорость его колеблется с некоторой частотой около среднего значения. Наибольший практический интерес представляет случай, когда машина работает параллельно с мощной сетью, частоту f1 тока которой можно считать постоянной. В этом случае колебания угловой скорости ротора происходят около синхронной угловой скорости
Одновременно с колебаниями происходят также колебания угла нагрузки .
Действительно, при > c ротор забегает вперед и угол между векторами и при работе в режиме генератора увеличивается, а при c уменьшается.
Колебания угла в свою очередь неразрывно связаны, как следует из векторных диаграмм, с колебаниями величин мощности Р и тока якоря I.
Поэтому внешне колебания синхронной машины проявляются в колебаниях стрелок ваттметров и амперметров. Чем больше амплитуда колебаний и , тем больше также колебания Р и I. Если мощность сети мала, то возникают также колебания величины напряжения U.
При ротор вращается с некоторым скольжением s относительно магнитного поля статора, и поэтому при колебаниях синхронной машины колеблется также величина s. На рис. представлены
кривые затухающих колебаний. Индексы 1 относятся к исходному режиму, до начала колебаний, а индексы 2 — к последующему режиму, после затухания колебаний.
В ряде случаев возникают весьма сильные колебания синхронных машин, которые серьезным образом нарушают их нормальную работу, а также работу энергосистемы в целом.
При колебаниях в синхронных машинах происходят сложные переходные процессы, которые ниже рассматриваются лишь в основных чертах и преимущественно с физической точки зрения.
Колебания синхронных машин бывают вынужденные и свободные.
Вынужденные колебания синхронной машины возникают в случаях, когда механический момент на валу непостоянен и содержит пульсирующие составляющие.
Чаще всего это бывает при соединении синхронных машин с поршневыми машинами (например, дизельный первичный двигатель у генератора и поршневой компрессор у двигателя).
Вынужденные колебания становятся особенно сильными, нежелательными и опасными, когда их частота близка к частоте собственных или свободных колебаний и поэтому возникают резонансные явления, а также когда в общую сеть включено несколько синхронных машин, имеющих вынужденные колебания с одинаковыми или кратными частотами. Например, иногда возникают затруднения при параллельной работе так называемых синхронных дизель-генераторов, первичными двигателями которых являются дизели.
Для
уменьшения вынужденных колебаний
дизель-генераторы, а часто также
двигатели поршневых