Отчет по ознакомительной практике на АО "ММК"

Автор: Пользователь скрыл имя, 20 Февраля 2012 в 07:46, отчет по практике

Описание работы

Целью учебной практики является изучение структуры металлургического предприятия с полным циклом производства. Металлургические предприятия принадлежат к отрасли называемой черной металлургией. Черная металлургия-отрасль промышленности, производящая металлические сплавы на основе железа, а именно чугун, сталь и ферросплавы.

Содержание

1. Введение .................................................................................................................3
2. Структура металлургического предприятия с полным циклом производства.5
3. Углеподготовительный цех...................................................................................8
4. Агломерационное производство……………………………………………….14
5. Огнеупорное производство.................................................................................23
6. Горно-обогатительное производство.................................................................29
7. Доменное производство.......................................................................................34
8. Сталеплавильное производство..........................................................................39
9. Кислородно-конверторное производство..........................................................47
10. Коксохимическое производство.........................................................................57
11. Производство ферросплавов...............................................................................66
12. Прокатное производство......................................................................................74
13. Список литературы...............................................................................................80
14. Приложения

Работа содержит 1 файл

Отчет по ознакомительной практике на АО ММК.rtf

— 834.40 Кб (Скачать)

Кислые шлаки состоят главным образом из кислотного оксида SiO2 и некоторого количества таких основных оксидов, как FeO и MnO. Составы кислых шлаков характеризуются степенью их кислотности (или просто "кислотностью"), выражаемой обычно отношением SiO2/(FeO + MnO).

Роль шлака в сталеплавильном производстве чрезвычайно велика. Удалее-ние, например, из металла таких вредных примесей, как сера и фосфор, заключа-ется в переводе этих элементов в шлак и создании условий, препятствующих их обратному переходу из шлака в металл. Изменяя состав шлака, его количество и температуру, можно добиться увеличения или уменьшения содержания в металле марганца, кремния, хрома и других элементов. Поэтому во многих случаях задача сталеплавильщика заключается в получении шлака необходимой консистенции и химического состава.

2. Основные реакции сталеплавильных процессов.

Поскольку сталь получают обычно из чугуна и лома в результате окисления и удаления содержащихся в них примесей (кремния, марганца, фосфора и др.), особое значение в сталеплавильной практике имеют реакции окисления. Кисло-род для протекания этих реакций поступает или из атмосферы, или из железной руды, или из других окислителей, или при продувке ванны газообразным кисло-родом.

При контакте с металлом и шлаком окислительной атмосферы, содержащей кислород в виде О2, СО2 или Н2О, образуются высшие оксиды железа, обогащаю-щие шлак кислородом (например, СО2 + 2FeO = Fe2О3 + СО). Температура плавле-ния стали в зависимости от состава колеблется обычно в пределах 1400-1530°С, а перед выпуском фактически составляет обычно 1550-- 1650 °С. Таким образом, рассматриваются расплавы, относительно слабо перегретые по сравнению с линией ликвидуса. У таких расплавов влияние типа структуры, свойственной твердому состоянию, сохраняется и при температурах, превышающих линию ликвидуса. При этом сохраняется так называемый "ближний" порядок располо-жения атомов в расплаве. Эта "структура" жидкого металла меняется в зависимо-сти от состава сплава и его температуры.

Углерод, растворенный в металле, при температуре, свойственной сталепла-вильным процессам, окисляется в основном до СО. При очень низких концентра-циях углерода кроме реакции С + О = СО следует учитывать также реакцию С +О2 = СО2. Скорость протекания реакции окисления углерода (реакции обезугле-роживания) определяется интенсивностью подвода окислителя и условиями обра-зования и выделения продукта реакции - оксидов углерода. Чтобы пузырек СО мог образоваться в металле, он должен преодолеть давление расположенного над ним столба металла, шлака и атмосферы, а также силы сцепления жидкости (преодоление сил поверхностного натяжения): Углерод, растворенный в металле, может окислять кислород:

а) содержащийся в газовой фазе

С+ 1/2О2 = СОт;

при протекании этой реакции выделяется значительное количество тепла;

б) содержащийся в оксидах железа

С + FeO = Fe + СО;

эта реакция идет с поглощением заметного количества тепла;

в) растворенный в металле С + [О] = СО;

при протекании этой реакции выделяется очень небольшое количество тепла. Эту реакцию называют часто основной реакцией сталеплавильного производства.

Сера обладает неограниченной растворимостью в жидком железе и ограни-ченной в твердом. При кристаллизации стали по границам зерен выделяются застывающие в последнюю очередь сульфиды железа. Железо и сульфид железа образуют низкоплавкую эвтектику (температура плавления 988 °С), которая при наличии кислорода (образование оксисульфидов) плавится при еще более низких температурах. Межзеренные прослойки (обычно на микрошлифе они выглядят в виде нитей) фазы, богатой серой, при нагревании металла перед прокаткой или ковкой размягчаются, и сталь теряет свои свойства -- происходит разрушение металла (красноломкость). Красноломкость особенно сильно проявляется в литой стали, так как сульфиды и оксисульфиды в этом случае скапливаются по грани-цам первичных зерен. Если сталь хотя бы однократно подвергалась горячей деформации, то вследствие измельчения зерна и образования при деформации новых зерен красноломкость проявляется в гораздо меньшей степени. Однако и в этом случае стремятся получить в стали минимальное содержание серы из-за заметного вредного влияния ее на механические свойства стали (в частности, на величину ударной вязкости), что особенно проявляется в направлении, перпен-дикулярном оси прокатки или ковки. Повышенное содержание серы приводит часто к появлению так называемых "горячих трещин", особенно при непрерывной разливке стали.

Активность серы в жидком железе зависит от состава расплава. Такие при-меси, как углерод, кремний, повышают активность серы в жидком расплаве, так как вытесняют ее из "микроячеек" структуры жидкого металла и занимают ее место.

Поэтому, например, при прочих равных условиях обессеривать чугун, содержащий много углерода и кремния, легче, чем обычную сталь. Высокая пове-рхностная активность серы приводит к тому, что на поверхности раздела фаз кон-центрация серы выше, чем в объеме раствора. Поэтому наибольший эффект дает применение таких методов ведения плавки, которые обеспечивают увеличение поверхности контакта металла с десульфурируюшей фазой (искусственное пере-мешивание металла со шлаком, вдувание в металл тонкоизмельченных порошко-образных реагентов и т.п.).

Элементы, у которых значения изменения свободной энергии при образо-вании соединений с серой меньше значения изменения свободной энергии при соединении серы с железом, могут быть элементами - десульфураторами. Такими элементами являются Mn, Mg, Na, Ca и др., а также церий (Се) и другие редкозе-мельные элементы. Все эти элементы используют на практике: натрий в виде соды при внедоменной десульфурации чугуна; магний -- в виде чистого Mg или сплавов (лигатур) с другими металлами; кальций - иногда в виде сплавов с дру-гими металлами, а чаше в виде извести (СаО) или известняка (СаСОз); марганец в виде сплавов марганца с железом (ферромарганца), а также в виде марганцевой руды. Очень большим сродством к сере обладают редкоземельные металлы. Самым дешевым и распространенным из перечисленных материалов является известь.

Основным источником серы в шихте является чугун. Кроме того, опреде-ленное количество серы может попасть в металл с ломом (особенно со стружкой, не очищенной от смазочных масел), с добавочными материалами, а также из атмосферы печи, если печь отапливают топливом (мазутом, газом), содержащим серу.

В сталеплавильном агрегате удаление серы из расплавленного металла в шлак происходит в большинстве случаев в результате образования CaS: Fe + [S] + СаО = CaS + FeO, при этом сера, растворенная в металле реагирует с СаО в шла-ке. Реакция протекает на поверхности раздела фаз, и увеличение этой поверхнос-ти (перемешивание металла со шлаком, вдувание в металл СаО в виде порошко-образной извести и другие способы) ускоряет эту реакцию и способствует более глубокой десульфурации. Диффузия серы из глубины ванны к месту реакции со шлаком - процесс довольно медленный. Перемешивание металла (при кипении ванны, при ее продувке инертными газами или при электромагнитном переме-шивании) ускоряет этот процесс. Если шлак, кроме СаО, содержит много МnO, возможно протекание реакции Fe + [S] + MnO = MnS + FeO.

Образующийся при реакциях десульфурации сульфид кальция CaS нераст-ворим в металле; сульфид марганца MnS также почти нерастворим в металле. В результате протекания реакций удаления серы из металла общая концентрация серы в шлаке (S) растет, а концентрация серы в металле [S] уменьшается. Отно-шение концентраций (S)/ [S] называют коэффициентом распределения серы. Чем выше значение этого коэффициента, тем лучше происходит процесс удаления серы из металла. При повышении температуры ванны значение коэффициента распределения серы возрастает, так как повышается скорость диффузии серы, шлак становится более жидкоподвижным и активным, ускоряется ход самой реакции. Скачивание шлака и наведение нового (чистого по сере) шлака также способствуют переходу новых порций серы из металла в шлак.

Таким образом, удалению серы из металла (десульфурации металла) спосо-бствуют:

    • наличие основных шлаков с высокой активностью СаО;
    • низкая окисленность металла, низкая окисленность шлака (минимум FeO);
    • низкая концентрация серы в шлаке (скачивание и наведение нового шлака);
    • перемешивание   металла   со   шлаком   и   увеличение   поверхности контакта;
    • повышение температуры ванны.

Неметаллическими включениями называют содержащиеся в стали соеди-нения металлов (железа, кремния, марганца, алюминия, церия и др.) с неметалл-лами (серой, кислородом, азотом, фосфором, углеродом). Количество неметалли-ческих включений, их состав, размеры и характер расположения в готовом изде-лии оказывают существенное, а иногда решающее влияние на свойства стали. Неметаллические включения ухудшают не только механические (прочность, плас-тичность), но и другие свойства стали (магнитную проницаемость, электропро-водность и др.), так как нарушают сплошность металла и образуют полости, в которых концентрируются напряжения в металле. Неметаллические включения принято разделять на две группы: 1) включения, образующиеся в процессе реакций металлургического передела; 2) включения, механически попадающие в сталь. Эти включения представляют собой частицы загрязнений, бывших в шихте и не удалившихся из металла в процессе плавки, частицы оставшегося в металле шлака, частицы попавшей в металл футеровки желоба, ковша. Эндогенные вклю-чения непрерывно образуются в металле в процессе плавки, разливки и кристалл-лизации слитка или отливки. Большая часть образовавшихся включений успевает всплыть и удалиться в шлак, однако какая-то часть остается. В литой стали вклю-чения присутствуют в виде кристаллов и глобулей. После обработки давлением (прокатки, ковки, штамповки) они меняют форму и расположение и видны под микроскопом в виде нитей, строчек, цепочек, ориентированных преимущественно в направлении деформации. Включения в зависимости от химического состава принято делить на сульфиды (FeS, MnS и т.п.), оксиды (FeO, MnO, SiO2, А12О3 и т.п.) и нитриды (TiN, ZrN и т.п.). Кроме того, иногда выделяют также фосфиды и карбиды.

Эндогенные неметаллические включения образуются в результате взаимо-действия растворенных в металле компонентов или уменьшения их растворимо-сти при застывании стали. Образующиеся включения легче металла, они стре-мятся всплыть. Скорость их всплывания зависит от размеров включений, вязкости металла, смачиваемости включений металлом и шлаком, движения (перемешива-ния) металла и шлака.

На скорость укрупнения и всплывания включений большое влияние оказы-вают процессы их коагуляции (слипания) и коалесценции (сливания с исчезнове-нием поверхностей раздела), так как в соответствии с приведенной формулой скорость всплывания пропорциональна квадрату радиуса частицы. Температура плавления включений сложного состава может быть ниже температуры жидкой стали. Такие включения легко укрупняются.

Во многих случаях образовавшиеся включения очень мелки, силы смачива-ния на границе включение-металл заставляют их двигаться вместе с перемеши-вающимся металлом ("витание"); иногда включение, достигшее шлака, если оно им не смачивается, не покидает металла и не переходит в шлак ("отталкивается" шлаком). Задача, таким образом, заключается в такой организации технологии плавки, при которой образовавшиеся включения плохо смачивались бы металлом (и быстро от металла отделялись), а шлаком - хорошо (быстро "поглощались" шлаком). Наименее благоприятные условия для удаления включений из металла создаются тогда, когда эти включения образуются в процессе кристаллизации стали: по мере снижения температуры повышается вязкость металла, рост крис-таллов застывающей стали препятствует подъему включений. В результате часть таких включений неизбежно остается в металле. Задача металлурга заключается в том, чтобы обеспечить такую форму и расположение включений в готовом изделии, которые бы не ухудшали качества металла.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Кислородно-конвертерное производство.

1. Технология плавки.

Шихтовка плавки и организация загрузки. Шихтовку, т.е. определение рас-хода на плавку чугуна и лома, шлакообразующих, ферросплавов и других матери-алов, в современных цехах проводят с помощью ЭВМ на основании вводимых в нее данных о составе чугуна и других шихтовых материалов, температуре чугуна, параметрах выплавляемой стали и некоторых других. При этом расход лома, являющегося охладителем плавки, определяют на основании расчета теплового баланса плавки, увеличивая или уменьшая расход так, чтобы обеспечивалась зада-нная температура металла в конце продувки, а расход извести -- так, чтобы обес-печивалась требуемая основность шлака (2,7--3,6). Лом загружают в конвертер совками объемом 20-110м3; их заполняют ломом в шихтовом отделении цеха и доставляют к конвертерам рельсовыми тележками. Загрузку ведут через отверстие горловины конвертера, опрокидывая совок с помощью полупортальной машины, либо мостового крана, либо напольной (перемещающейся по рабочей площадке цеха) машины. Жидкий чугун заливают в наклоненный конвертер через отверстие горловины с помощью мостового крана из заливочного ковша, который обычно вмещает всю порцию заливаемого чугуна (до 300т и более). Заливочные ковши с чугуном доставляют к конвертерам из миксерного или переливного отделений. Для загрузки сыпучих шлакообразующих материалов конвертер оборудован ин-дивидуальной автоматизированной системой. Из расположенных над конверте-ром расходных бункеров, где хранится запас материалов, их с помощью электро-вибрационных питателей и весовых дозаторов выдают в промежуточный бункер, а из него материалы по наклонной течке (трубе) ссыпаются в конвертер через горловину. При этом система обеспечивает загрузку сыпучих без остановки про-дувки по программе, которая разработана заранее или задается оператором из пульта управления конвертером. Периоды плавки Плавка в кислородном конвертере включает следующие периоды:

1. Загрузка лома. Стальной лом в количестве до 25--27 % от массы метали-ческой шихты (при использовании специальных технологических приемов и в большем количестве) загружают в наклоненный конвертер совками. Объем совков достигает 110м3, его рассчитывают так, чтобы загрузка обеспечивалась одним - двумя совками, поскольку при большем числе возрастает длительность загрузки и плавки и целом. Загрузка длится 2-4 мин. Иногда с целью ускорения шлакообразования после загрузки лома или перед ней в конвертер вводят часть расходуемой на плавку извести.

2. Заливка чугуна. Жидкий чугун при температуре 1300 до 1450°С заливают в наклоненный конвертер одним ковшом в течение 2--3 мин.

3. Продувка. После заливки чугуна конвертер поворачивают в вертикальное рабочее положение, вводят сверху фурму и включают подачу кислорода, начиная продувку. Фурму в начале продувки для ускорения шлакообразования устанавли-вают в повышенном положении, а через 2-4 мин ее опускают до оптимального уровня. В течение первой трети длительности продувки в конвертер двумя - тремя порциями загружают известь; В течение продувки протекают следующие основ-ные металлургические процессы:

    • Окисление составляющих жидкого металла вдуваемым кислородом; окисляется избыточный углерод, а также весь кремний, около 70% марганца и немного (1-2%) железа. Газообразные продукты окисления углерода (СО и немного СО2 ) удаляются из конвертера через горло-вину (отходящие конвертерные газы), другие оксиды переходят в шлак;
    • Шлакообразование. С первых секунд продувки начинает формирова-ться основной шлак из продуктов окисления составляющих металла (SiO2, MnO, FeO, Fe2O3) и растворяющейся в них извести (СаО), а также из оксидов, вносимых миксерным шлаком, ржавчиной сталь-ного лома и растворяющейся футеровкой. Основность шлака по ходу продувки возрастает по мере растворения извести, достигая 2,7-3,6;
    • Дефосфорация и десулъфурация. В образующийся основной шлак удаляется часть содержащихся в шихте вредных примесей - большая часть (до 90%) фосфора и немного (до 30%) серы;
    • нагрев металла до требуемой перед выпуском температуры (1600-1660 °С) за счет тепла, выделяющегося при протекании экзотермичес-ких реакций окисления составляющих жидкого металла;
    • расплавление стального лома за счет тепла экзотермических реакций окисления; обычно оно заканчивается в течение первых 2/3 длитель-ности продувки;
    • д) побочный и нежелательный процесс испарения железа в надфур-менной зоне из-за высоких здесь температур (2000-2600°С) и унос окисляющихся паров отходящими из конвертера газами, что вызывает потери железа и требует очистки конвертерных газов от пыли.

Информация о работе Отчет по ознакомительной практике на АО "ММК"