Автор: Пользователь скрыл имя, 19 Марта 2013 в 20:24, статья
Экономические преобразования, происходящие в настоящее время в Республике Беларусь и других постсоветских странах, характеризуются неустойчивой динамикой микроэкономических условий функционирования субъектов хозяйствования. При этом информация о данных условиях и отчетных показателях финансово-хозяйственной деятельности организаций подвержена резким конъюнктурным колебаниям и имеет слабую сопоставимость во времени. Например, использование сопоставимых цен позволяет учитывать влияние инфляционных процессов и изменения структуры цен, но не изменения условий функционирования организации.
Многокритериальные МЕТОДЫ ОБОСНОВАНИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ В УСЛОВИЯХ НЕСТОХАСТИЧЕСКОЙ НЕОПРЕДЕЛЕННОСТИ ДАННЫХ
Ахрамейко А.А.
Белорусско-Российский университет
e-mail: jion@tut.by
Железко Б.А., к.т.н., доцент
Белорусский государственный экономический университет
e-mail: Zhelezko_B@bseu.by
1. ВВЕДЕНИЕ
Экономические преобразования, происходящие в настоящее время в Республике Беларусь и других постсоветских странах, характеризуются неустойчивой динамикой микроэкономических условий функционирования субъектов хозяйствования. При этом информация о данных условиях и отчетных показателях финансово-хозяйственной деятельности организаций подвержена резким конъюнктурным колебаниям и имеет слабую сопоставимость во времени. Например, использование сопоставимых цен позволяет учитывать влияние инфляционных процессов и изменения структуры цен, но не изменения условий функционирования организации.
Традиционные методы и модели обоснования (поддержки принятия) управленческих решений, успешно применяемые в рыночных экономиках, в переходной экономике теряют свою эффективность: математические методы и модели, основанные на детерминистических подходах, дают недостаточно точные результаты, а методы математической статистики не применимы для анализа качественных экспертных данных (например, когда при анализе финансового состояния фактические данные берутся из финансовой отчетности, а остальная необходимая информация получена от экспертов).
Перечисленные особенности
экономических процессов
Отдельные направления рассматриваемой проблемы изучаются несколькими научными школами в Республике Беларусь, в частности, научной школой Белорусского государственного университета (А.И. Змитрович, В.В. Краснопрошин), Белорусско-Российского университета (А.В. Венберг, В.А. Широченко), Гродненского государственного университета (А.Э. Алехина, П.В. Севастьянов) и Белорусского государственного экономического университета (Е.И. Велесько, Б.А. Железко, А.Н. Морозевич).
Решить такие проблемы пытаются и зарубежные ученые и практики. Построением экспертных систем финансового анализа занимаются М. Думпос, К. Зопоунидис и др.; экспертных систем анализа причин успешного или неуспешного развития предприятия — В. Шринивасан и др.; экспертных систем получения знаний в области финансов – Дж. Хартвигсен и др.
В области применения многокритериальных методов поддержки принятия решений в финансовом менеджменте и экономике также работает ряд ученых по следующим направлениям: диагностика банкротства – Р. Словински, К. Зопоунидис, А.И. Димитрас, М. Думпос, Б. Матараццо и др.; оценка кредитного риска – К. Зопоунидис, П.М. Пардалос, М. Думпос и др.; оценка и классификация ценных бумаг, оценка странового риска – М. Думпос, К. Зопоунидис и др.; рейтинги облигаций, управление персоналом – В. Шринивасан и др.; формирование портфеля и управление им – К. Зопоунидис, М. Думпос, С.Х. Занакис, П.М. Пардалос и др. [1-2]
В этих же направлениях работали Э. Альтман, Р. Эйзенбейз, Б. Марешаль, Й. Сискос и др. Получен ряд интересных результатов, однако не решены вопросы принятия управленческих решений в условиях нестохастической неопределенности исходных данных и построения адекватных показателей, комплексно характеризующих состояние изучаемых объектов при отсутствии полной информации о них.
Целью данного исследования является разработка многокритериального инструментального метода обоснования управленческих решений в условиях нестохастической неопределенности данных.
2. ПРОБЛЕМЫ
ПОДДЕРЖКИ ПРИНЯТИЯ УПРАВЛЕНЧЕС
Под нестохастической неопределенностью данных понимается неопределенность, которая не носит вероятностного характера [3-4].
В настоящее время многие отечественные предприятия находятся в кризисном или близком к кризисному состоянии. Как показывают исследования, это связано не только с общим плохим состоянием отдельных отраслей, а с неверным обоснованием и принятием решений по управлению предприятиями в условиях высокой динамики внешней среды. Поэтому проблема разработки методов поддержки принятия решений является весьма актуальной для экономики Республики Беларусь.
Анализ преимуществ и недостатков метода анализа иерархий и его основных модификаций позволил выявить перспективные направления его развития, которое приведет к существенному расширению его сферы применимости. На основании анализа методов построения единого мнения экспертной группы обоснована необходимость совершенствования метода медианы Кемени с целью обеспечения возможности его применения для обобщения нечетких экспертных ранжировок. В результате исследования основных способов нормирования экономических показателей установлена необходимость обобщения процедуры нормирования применительно к рассматриваемой проблематике.
На основании проведенного анализа сильных и слабых сторон моделей классических многокритериальных методов поддержки принятия решений в области анализа финансового состояния организации сформулирован ряд проблем и вытекающих из них базовых требований к методам поддержки принятия решений для ситуации нестохастической неопределенности данных (максимальная независимость от внешних источников информации, например, возможность принятия решения без исследования большой выборки финансовых отчетов организаций; представление совокупности комплексных и частных показателей определенных сфер деятельности организации в виде иерархического дерева критериев; сохранение всех полезных промежуточных нечетких данных, характеризующих различные аспекты состояния анализируемого объекта, с целью их использования на конечной стадии обоснования решений; интерпретация значения показателя в соответствии с построенной лингвистической шкалой на основе базы знаний; использование линейного и нелинейного нормирования для сопоставления разнородных показателей и учета разного вклада в итоговый показатель изменения частных показателей на различных промежутках их областей определения; использование современных методов обработки результатов экспертных опросов, а также методов формирования единого мнения группы экспертов с учетом их квалификации при определении важности показателей и оценке качественных и некоторых количественных показателей (значения которых нельзя получить из статистической или бухгалтерской отчетности); использование методов, позволяющих обрабатывать количественные и качественные данные, не обладающие статистической однородностью, и анализировать процессы, не имеющие постоянных статистических параметров).
3. КОМПЛЕКСНЫЙ
ИНСТРУМЕНТАЛЬНЫЙ МЕТОД
Для преодоления указанных проблем предложено экспертным способом составлять нечеткую прогнозную финансовую отчетность исследуемого субъекта хозяйствования и по ней рассчитывать показатель DAINA [5]. Комплексный инструментальный метод поддержки принятия управленческих решений (КИМ ППР) включает ряд описанных ниже процедур, методов и моделей, позволяющих обрабатывать качественные и количественные (в том числе нечеткие) исходные данные.
Показатель DAINA в общем случае рассчитывается по формуле
DAINA , (1)
где ψ – некоторая аналитическая функция свертки; {K} – множество весов групп показателей; {X} – множество весов показателей; {A} – множество нормированных значений показателей.
Для решения практических задач удобно использовать линейную функцию свертки. Тогда показатель DAINA рассчитывается по формуле:
, (2)
где m – количество групп показателей; j – номера групп показателей; kj – вес j-й группы показателей; nj – количество показателей в j-й группе; i – номера показателей; xij – вес i-го показателя j-й группы; aij – нормированное значение i-го показателя j-й группы.
На основании проведенных исследований предложены оригинальные экономико-математические методы, позволяющие осуществлять поддержку принятия управленческих решений в условиях нестохастической неопределенности данных. Основными из них являются описанные ниже.
Нечеткий метод анализа иерархий (fuzzyAHP) и нечеткий метод анализа иерархий с дефаззификацией (fuzzyAHP+), основанные на формализации размытых экспертных суждений нечеткими трапециевидными числами с учетом психофизических особенностей эксперта и влияния закона Вебера и отличающиеся использованием лингвистических шкал оценки значимости альтернатив. Метод fuzzyAHP+ отличается от метода fuzzyAHP тем, что в результате расчетов лицо, принимающее решение, получает четкий вектор приоритетов, а при использовании fuzzyAHP — нечеткий [6-7].
Методы нечеткой медианы Кемени (fuzzyKM) и нечеткой медианы Кемени с дефаззификацией (fuzzyKM+), отличающиеся возможностью использования нечетких экспертных ранжировок и получения в качестве единого мнения экспертной группы соответственно четкого или нечеткого вектора приоритетов [8].
Полученные результаты позволяют расширить сферу применимости традиционных методов на условия нестохастической неопределенности и повысить эффективность извлечения знаний из экспертов, так как предполагают использование экспертных знаний, выраженных высказываниями на естественном языке, в то время как наиболее близкие методы (например, предложенный Дж. Бакли) предполагают оценивание экспертом превосходства одной альтернативы над другой нечетким числом или оперируют четкими числами.
Введено понятие квази-модального значения (akm) нечеткого числа A(a1; a2; a3; a4), которое определяется как абсцисса точки пересечения L и R компонент его функции принадлежности μ(a) (рис. 1).
, (3)
Рис. 1 Квази-модальное значение нечеткого трапециевидного числа
Предложен метод нормирования нечетких величин, который представляет собой построение их отображения на интервал [0; 1]. Данная операция вводится как нормирование каждого компонента нечеткого числа по аналогии с нормированием четких величин.
Вводится понятие типичного значения показателя, являющегося нечетким трапециевидным числом и состоящего из четырех компонентов: первый и четвертый характеризуют интервал возможных значений показателя (a1; a4), а второй и третий – интервал оптимальных значений показателя (a2; a3). Предложенный способ нормирования нечетких чисел позволяет сопоставлять разноразмерные количественные и, что очень важно, качественные показатели, выраженные нечеткими числами или в вербальных оценках, что дает возможность строить различного рода комплексные показатели, основываясь на размытых исходных данных.
Разработан метод построения базы знаний и распознавания состояния организации. Он основан на введении лингвистических переменных «Состояние организации» и «Степень оценочной уверенности» и построении их терм-множеств. По результатам их исследования строится база знаний, состоящая из продукционных правил, которые позволяют определить принадлежность значения показателя DAINA тому или иному терму переменной «Состояние организации» и степень оценочной уверенности в принятом решении.
Предложена модель прогнозирования
кризисных процессов в
4. РЕАЛИЗАЦИЯ
КОМПЛЕКСНОГО
В ходе практической реализации
предложенного КИМ ППР
С учетом выявленных требований
разработан прототип СППР «Дайна» для
распознавания состояния
Рис. 2. Окно с результатами работы прототипа СППР «Дайна»
Применение данного прототипа позволяет упростить процедуру поддержки принятия решений. С помощью прототипа СППР «Дайна» проводились построение банковских и страховых рейтингов, анализ финансового состояния организаций и оценка эффективности реинжиниринга, мониторинг качества сварочного производства. Это указывает на достаточную универсальность прототипа СППР «Дайна» в рамках задач по обоснованию управленческих решений.
Предложен показатель качества СППР (QDSS). Он позволяет осуществлять количественную оценку и обоснованный выбор системы в зависимости от особенностей решаемых задач, а также учитывать не только факт выполнения требований, предъявленных потребителями, продавцами, производителями и проектировщиками, но и их значимость для полноценной работы системы:
(4)
где u – номера целевых групп специалистов, имеющих отношение к разработке и эксплуатации СППР; ru – коэффициенты значимости целевых групп; nu – количество требований в u-й группе; i – номера требований; – бинарная переменная, принимающее значение 1, если i-е требование u-й группы удовлетворяется, и 0 – в обратном случае; pi(u) – бинарная переменная, принимающая значение 1, если i-е требование u-й группы должно удовлетворяться, и 0 – в обратном случае.
Информация о работе Многокритериальные методы принятия решений