Анализ конструкции и методика расчета автомобиля ВАЗ-2108

Автор: Пользователь скрыл имя, 18 Марта 2012 в 10:14, курсовая работа

Описание работы

1. Картер сцепления; 2. Опорная втулка вала вилки выключения сцепления; 3. Вилка выключения сцепления; 4. Подшипник выключения сцепления; 5. Нажимная пружина; 6. Ведомый диск; 7. Маховик; 8. Нажимной диск; 9. Шкала для проверки момента зажигания; 10. Болт крепления сцепления к маховику; 11. Кожух сцепления; 12. Опорные кольца нажимной пружины; 13. Направляющая втулка муфты подшипника выключ

Содержание

Содержание

Техническая характеристика автомобиля
1 Трансмиссия автомобиля
1.1 Сцепление
1.2 Коробка передач автомобиля
1.3 Главная передача автомобиля
1.4 Дифференциалы трансмиссии автомобиля
1.5 Силовые приводы, валы и полуоси трансмиссии автомобиля
2 Ходовая часть шасси автомобиля
2.1 Подвески автомобиля
2.2 Колеса и шины автомобиля
2.3 Полуоси и балка
2.4 Несущая система автомобиля
3 Система управления шасси автомобиля
3.1Тормозная система автомобиля
3.2 Рулевое управление автомобиля
Список использованных источников

Работа содержит 1 файл

расчет компоновки ВАЗ 2108.doc

— 1.64 Мб (Скачать)

Момент, скручивающий балку, Мкр = Pт1rк = Rт2rк (rк—радиус качения колеса).

Результирующее напряжение от изгиба и кручения для круглого трубчатого сечения

 

,

 

где W = 0,2(D4 — d4)/D — момент сопротивления трубчатого сечения.

Для прямоугольного и коробчатого сечения напряжения в вертикальной и горизонтальной плоскостях определяют раздельно и суммируют арифметически: σи = Mи.в / Wв + Mи.г /Wг. Напряжения кручения при этом не суммируют:

 

τ = Mкр / Wкр = Рт1rк / Wкр = Рт2rк / Wкр,

Максимальные напряжения изгиба относятся к крайним волокнам сечения, а напряжения кручения к средним волокнам сечения.

При заносе балку моста рассчитывают на изгиб в вертикальной плоскости, считая при этом Рт1=Рт2 = 0.

Изгибающие моменты в вертикальной плоскости

 

Mи1 = R"z1l — Py1rK; Mи2 = R"z2l + Py1rK.

 

Ry1 и Ry2 — боковые реакции при заносе:

 

Ry1 = R'z1 φ; R'z1 = 0,5 G2 (1 + 2 φ H / В);

Ry2 = R'z2 φ; R'z2 = 0,5 G2 (1 — 2 φ H / В);

 

где R'z1 и R'z2 — нормальные реакции опорной поверхности при заносе.

Условно принимается φ = 1.

Эпюры моментов от R'z и Py1 строятся раздельно, а затем складывают. Опасное сечение картера находится в месте крепления рессоры: здесь напряжение изгиба σи = Ми / W.

При динамическом нагружении изгибающий момент в вертикальной плоскости:

 

Ми = Rz1 Kдl,

 

где Кд=1,5...3 — коэффициент динамичности.

Напряжение изгиба σи = Ми / W.

Для балок мостов, литых из стали и чугуна, [τи] = 300 МПа, для штампованных из стального листа [τи] = 500 МПа.

Определение нагрузок и расчет переднего моста производят так же, как и заднего моста. При торможении коэффициент перераспределения нагрузки на передний мост m1 = 1,1.„1,2. Необходимо учитывать переменное сечение балки: двутавровое в средней части и после рессорной площадки постепенно переходящее в круглое. Вертикальные реакции Rzl = Rz2 = m1G1/2, где G1 — нагрузка на передние колеса.

Для балки управляемого моста жесткость важна для сохранения углов установки колес. Жесткость ведущего моста влияет на условия зацепления зубчатых передач, на нагрузку подшипников и на нагруженность полуосей.

Прогиб балки равен силе в заданном сечении, отнесенной к жесткости сечения f = Pи / (EJx). Балка нагружена в местах крепления рессор. Переменное сечение балки затрудняет расчет. В таких случаях или упрощают схему и ведут расчет по наиболее опасному сечению, или усложняют расчет, применяя метод конечных элементов.

Прогиб балки грузовых автомобилей достигает 2...3 мм.

 

Рисунок 23. Расчетная схема поворотной цапфы

 

Поворотный кулак (рис. 23). Расчет ведется для тех же трех случаев нагружения: торможения при прямолинейном движении, заноса и динамического нагружения.

При торможении суммарный момент изгиба в вертикальной плоскости

 

,

 

где R''z1 = Rzl — Gк; Ртор = Rzφ — тормозная сила на колесе, нагружающая цапфу.

Напряжение изгиба:

 

σи = Ми / W.

 

При заносе напряжение изгиба на цапфе при Ртор = 0

 

σи1=(R''z1 — Ry1rк)/W; σи2=(R''z2с — Ry2rк)/W.

 

При динамическом нагружении напряжение изгиба

 

σи = Rz1с Кд / W,

 

где коэффициент динамичности Кд = 1,5...3.

Для стали 30Х и 40Х допускаемое напряжение [σи] = 500 МПа.

 

Рисунок 24. Расчетная схема шкворня

 

Шкворень. Расчетные режимы, применяемые при расчете шкворня, те же, что и при расчете цапф. Наклоном шкворня пренебрегаем.

При торможении реакции, нагружающие верхний R'шк и нижний R''шк концы шкворня, обусловленные действием:

реакции Rz :

R'шк1 = R''шк1 = Rzl / (a + b);

 

силы Ртор :

 

R'шк2 = Рторb / (a + b); R''шк2 = Рторa / (a + b);

 

реактивной силы:

 

R'шк3 = Р1b / (a + b); R''шк3 = Р1a / (a + b),

 

где P1 = Рторl / l1;

тормозного момента Мтор = Рторrк

 

R'шк4 = Рторrк / (a + b).

 

Суммарная сила, действующая на нижний конец шкворня,

 

.

 

Суммарная сила, действующая на верхний конец шкворня:

 

.

 

На шкворень действуют напряжения:

 

изгиба σи = R''шкΣd / Wи;

среза τcp = 4P''шкΣ / (πd2шк);

смятия σсм = R''шкΣ/(dшкlшк).

Для расчета принимают наибольшее из значений Р'шкΣ, Р''шкΣ.

При заносе действуют только поперечные силы.

От вертикальной реакции:

 

R'шк1 = R''z1 l / (a + b); R''шк1 = R''z1 l / (a + b),

 

где R''z1(2) = = R''z1(2) — Gк.

От боковой силы Ry и от момента, создаваемого этой силой:

 

левый шкворень R'шк1 = R''шк1 = Ry1 l / (a+b)

правый шкворень R'шк1 = R''шк1= Ry2 l / (а+b).

 

Суммарная нагрузка на левом шкворне:

 

R'шкΣ = [Ry1(rк—b) — R''z1 l] / (a + b);

R''шкΣ = [Ry1(rк + a) — R''z1 l] / (a + b).

 

Суммарная нагрузка на правом шкворне:

 

R'шкΣ = [Ry2(rк—b) — R''z2 l];

R''шкΣ = [Ry2(rк + a) — R''z2 l] / (a + b).

 

Напряжения определяются так же, как и при торможении.

При динамическом нагружении напряжение изгиба в вертикальной плоскости

 

σи = Rz1с Кд / W.

Расчетные режимы полуосей. Полуразгруженную полуось рассчитывают на изгиб и кручение так же как балку моста для трех случаев нагружения: прямолинейного движения, заноса и динамического нагружения.

При прямолинейном движении — результирующий изгибающий момент полуоси в вертикальной и горизонтальной плоскостях

 

 

момент кручения полуоси:

 

Мкр = Ртrк;

 

сложное напряжение:

 

.

 

При заносе изгибающие моменты на правом и левом колесах

 

Mиl=Ry2rк — Rz2b; Mи2 = Ry2 rк + R"z2b.

 

При динамическом нагружении

вертикальная нагрузка:

 

Rz1 Kд = Rz2 Kд;

 

горизонтальная нагрузка:

Rz1 Kд φ = Rz2 Kд φ;

 

скручивающая нагрузка:

 

Ртrк = Мкр = Rz1 Kд φrк = Rz2 Kд φrк.

 

При расчете полуразгруженной полуоси плечо изгиба b определяется как расстояние между плоскостями, проходящими через центр опорной площадки колеса и через центр опорного подшипника.

Полностью разгруженные и разгруженные на три четверти полуоси рассчитывают только на кручение и определяют их жесткость.

Касательное напряжение кручения:

 

τ = Ртrк / 0,2d3; Мкр = Ртrк.

 

Угол закручивания полуоси:

 

θ = (180 / π)(Mкрl / GJкр);

 

здесь момент инерции Jкр = πd4/32, модуль сдвига G = 85 ГПа. Угол закручивания обычно ограничивается θ = 9...15° на 1 м длины полуоси. Меньшее значение угла закручивания характеризует повышенную жесткость, большее значение — склонность к колебаниям и резонансным явлениям.

Полуразгруженная полуось разрушается в опасном сечении под подшипником. Здесь полуось должна быть утолщена. Разгруженная полуось разрушается в месте начала шлицев. Рекомендуется осадка конца полуоси под шлицевой конец для увеличения диаметра опасного сечения.


3.                  Система управления шасси автомобиля

 

3.1 Тормозная система автомобиля

 

1 – главный цилиндр гидропривода тормозов; 2 – трубопровод контура «правый передний – левый задний тормоз»; 3 – гибкий шланг переднего тормоза; 4 – бачок главного цилиндра; 5 – вакуумный усилитель; 6 – трубопровод контура «левый передний – правый задний тормоз»; 7 – тормозной механизм заднего колеса; 8 – упругий рычаг привода регулятора давления; 9 – гибкий шланг заднего тормоза; 10 – регулятор давления; 11 – рычаг привода регулятора давления; 12 – педаль тормоза; 13 – тормозной механизм переднего колеса.

 

Анализ и оценка конструкции тормозной системы автомобиля

Тормозной механизм.

Для оценки конструктивных схем тормозных механизмов служат следующие критерии:

Коэффициент тормозной эффективности. Отношение тормозного момента, создаваемого тормозным механизмом, к условному приводному моменту

Кэ = Мтор /(∑Рrтр),

 

где Мтор — тормозной момент; ∑Р — сумма приводных сил; rтр — радиус приложения результирующей сил трения (в барабанных тормозных механизмах — радиус барабана rб, в дисковых — средний радиус накладки rср).

Тормозная эффективность должна оцениваться раздельно при движении вперед и назад.

Дисковые тормозные механизмы.

Дисковые тормозные механизмы применяются главным образом на легковых автомобилях: на автомобилях большого класса на всех колесах; на автомобилях малого и среднего классов — в большинстве случаев только на передних колесах (на задних колесах применяются барабанные тормозные механизмы).

В последние годы дисковые тормозные механизмы нашли также применение на грузовых автомобилях ряда зарубежных фирм.

 

Рисунок 28 - Схема дискового тормозного механизма и его статическая характеристика

 

Схема и статическая характеристика дискового тормозного механизма приведены на рисунке 28. Для него тормозной момент

 

Мтр = 2Р μ rср,

а коэффициент эффективности

 

Кэ = Мтр / (2Р rср) = μ.

 

При расчетном коэффициенте трения μ = 0,35 коэффициент эффективности Кэ = 0,35. Из этого можно заключить, что дисковый тормозной механизм обладает малой эффективностью (как можно будет увидеть дальше — минимальной сравнительно с другими тормозными механизмами). Так, при расчетном коэффициенте трения μ = 0,35 тормозной момент примерно в 3 раза меньше приводного момента. Основным достоинством дискового тормозного механизма является его хорошая стабильность, что отражено в статической характеристике, которая имеет линейный характер. В настоящее время стабильности отдается предпочтение перед эффективностью, так как необходимый тормозной момент можно получить увеличением приводных сил в результате применения рабочих цилиндров большего диаметра или усилителя.

Барабанные тормозные механизмы.

Рассмотрим силы, действующие на колодку барабанного тормозного механизма (рис. 29, а).

Рисунок 29. Схема сил, действующих на колодку барабанного тормозного механизма, и характеристика

Колодка прижимается к тормозному барабану под действием силы Рτ. При вращении барабана по направлению, указанному стрелкой, между барабаном и накладкой колодки возникают силы взаимодействия. Выделим элементарную нормальную силу dРn и элементарную касательную силу dРτ.

Элементарная нормальная сила

 

dРn = μ dF = p b rб dβ,

 

где р — давление на накладки; dF — элементарная площадка накладки; b — ширина накладки; rб — радиус барабана; β — угловая координата элементарной площадки.

Элементарная касательная сила (сила трения)

 

dРτ = μ dРn = μ p b rб dβ

 

Тормозной момент, создаваемый колодкой,

 

.

 

Чтобы проинтегрировать это выражение, необходимо знать, как изменяется давление по длине накладки. При расчетах обычно принимают равномерное распределение давления или распределение по синусоидальному закону р = pmaxsinβ (возможно применение и других законов изменения давления).

При равномерном распределении давления Mтр = μbrб2pβ0 (β0 = β2 — β1 — угол охвата накладки), а при распределении по синусоидальному закону

 

Mтр = μbrб2p (cos β1 — cos β2).

С достаточной для практических целей точностью можно принять распределение давления по длине накладки равномерным. Это допущение используется далее при сравнительной оценке различных схем тормозных механизмов.

Как видно из схемы, равнодействующая сил трения (условная) приложена на радиусе ρ, который зависит от угла β0 = = 90...120°. При расчетах тормозного момента равнодействующую сил трения обычно приводят к радиусу тормозного барабана, что позволяет использовать упрощенные формулы. С этой целью вводят коэффициент k0, который можно определить, приравняв момент трения и колодках Mтр = ρ расчетному моменту трения Mтр = = Рτ rб, тогда

Информация о работе Анализ конструкции и методика расчета автомобиля ВАЗ-2108