Основные свойства и особенности обработки жаропрочных и коррозионностойких сталей

Автор: Пользователь скрыл имя, 18 Апреля 2012 в 14:51, доклад

Описание работы

Рабочие процессы в современных машинах характеризуются высокими значениями давлений, нагрузок, скоростей и температур. Обычные конструкционные стали в этих условиях недолговечны или вовсе непригодны, поэтому в машиностроении все большее распространение получают стали и сплавы с высокими показателями прочности, жаропрочности, жаростойкости, а также стойкости против коррозии.

Содержание

Введение……………………………………..……………….………………..…..2
1 Основные свойства и особенности обработки жаропрочных
и коррозионностойких сталей……………………………………....……………4
2 Обрабатываемость жаропрочных и коррозионностойких сталей и сплавов
при различных видах обработки резанием….………………………...…….…12
точение.……….…………………………………….……………………12
Фрезерование…..…………………………..……………..………………16
Сверление…..…………………………………..…………………..……..21
Протягивание…..…………………………….………………………..….25
Заключение…….....……………..……....…………………………………….….28
Список литературы……….………

Работа содержит 1 файл

Спецчасть1.doc

— 362.50 Кб (Скачать)

       Содержание

                                                                                                                                        

Введение……………………………………..……………….………………..…..2

1 Основные  свойства и особенности обработки  жаропрочных 

и коррозионностойких сталей……………………………………....……………4

2 Обрабатываемость жаропрочных и коррозионностойких сталей и сплавов

при различных  видах обработки резанием….………………………...…….…12

    1. точение.……….…………………………………….……………………12
    2. Фрезерование…..…………………………..……………..………………16
    3. Сверление…..…………………………………..…………………..……..21
    4. Протягивание…..…………………………….………………………..….25

Заключение…….....……………..……....…………………………………….….28

Список  литературы……….………………………….………………………..…29 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       ВВедение 

       Рабочие процессы в современных машинах  характеризуются высокими значениями давлений, нагрузок, скоростей и температур. Обычные конструкционные стали в этих условиях недолговечны или вовсе непригодны, поэтому в машиностроении все большее распространение получают стали и сплавы с высокими показателями прочности, жаропрочности, жаростойкости, а также стойкости против коррозии. 
Жаропрочные и коррозионностойкие стали относятся к категории труднообрабатываемых материалов. Они значительно хуже поддаются обработке резанием по сравнению с обычными конструкционными сталями.  
Низкая обрабатываемость этих материалов определяется их физико-механическими свойствами. В этих условиях весьма важно раскрыть причины, влияющие на их обрабатываемость, и найти способы и средства увеличения производительности их обработки на металлорежущих станках.

       Для решения этих задач необходимо ясное  представление о физических явлениях, возникающих в зоне резания, и, прежде всего о тепловых явлениях, процессе деформирования и разрушения при  стружкообразовании и формирование поверхностного слоя. В данной работе представлены особенности обработки при точении, фрезеровании и сверлении коррозионностойких и жаропрочных сталей, подвергнутых различным режимам термической обработки.

       Эффективная высокопроизводительная обработка  исследуемых материалов в значительной степени определяется материалом режущей части инструмента. Наряду с традиционными, широко распространенными инструментальными материалами, применяемыми для изготовления лезвийного инструмента, такими как быстрорежущие стали и твердые сплавы, применяются новые инструментальные материалы повышенной производительности, получаемые различными способами.

          

       1 основные свойства  и особенности  обработки жаропрочных  и коррозионностойких  сталей

        

       Жаропрочным называется материал, способный работать в напряженном состоянии при высоких температурах в течение определенного времени и обладающий при этом достаточной жаростойкостью, то есть стойкостью против химического разрушения поверхности в газовых средах при высоких температурах. Другим важным свойством жаропрочных сталей и сплавов является их высокая коррозионная стойкость в агрессивных средах.

       Коррозионностойким  называется материал, обладающий высоким  сопротивлением коррозии в агрессивных  средах, прежде всего в атмосфере  воздуха, паров воды и кислот. Обычно к таким материалам предъявляют требования обеспечения коррозионной стойкости при рабочей температуре детали.

       Большинство жаропрочных сплавов, как правило, обладает повышенной коррозионной стойкостью при высоких температурах в различных  средах. Поэтому, несмотря на то, что понятия жаропрочных и нержавеющих материалов по определению отличаются друг от друга, они обладают целым рядом общих физико-механических свойств, обуславливающих их общие технологические свойства по обрабатываемости резанием. 

       Основная  структура большинства жаропрочных и нержавеющих сталей и сплавов представляет собой обычно твердый раствор аустенитного класса с гранецентрированной кубической решеткой. При этом большая часть деформируемых жаропрочных сплавов принадлежит к типу дисперсионно твердеющих, т. е. в этих сплавах происходит выделение из твердого раствора структурной составляющей – второй фазы, отличной от его основы и рассеянной по всему объему сплава в тонкодисперсной форме.

       Высокая дисперсность структуры препятствует возникновению и развитию процессов скольжения, при этом сопротивление ползучести сплава повышается.     Сравнение значений механических характеристик жаропрочных сталей и сплавов и стали 45 показывает, что значения истинного предела прочности при растяжении, предела прочности и твердости при обычной температуре и отсутствии деформации (упрочнения), примерно равны. Поэтому худшая обрабатываемость жаропрочных и нержавеющих сталей и сплавов определяется другими физико-механическими и химическими свойствами и, прежде всего, структурой, механическими характеристиками, определяющими их свойства не только в исходном, но и в упрочненном состоянии и при нагреве, а также теплофизическими показателями (температура плавления, энергия активации, теплопроводность), определяющими свойства материала при повышенных температурах.

       Основные  особенности резания жаропрочных  и нержавеющих сталей и сплавов, затрудняющие их механическую обработку, следующие:

  • Высокое упрочнение материала в процессе деформации резанием. Повышенная упрочняемость жаропрочных и нержавеющих сталей и сплавов объясняется специфическими особенностями строения кристаллической решетки этих материалов. Характеристикой, определяющей пластичность или способность материала к упрочнению, является отношение условного предела текучести, соответствующего 0.2-процентной остаточной деформации, к пределу прочности. Чем меньше это отношение, тем более пластичен материал и тем большей работы и сил резания требует он для снятия одного и того же объема металла. Величина этого отношения для жаропрочных сплавов составляет до 0,4…0,45, в то время как для обычных конструкционных сталей эта величина составляет 0,6…0,65 и более.
  • Вследствие повышенной способности к упрочнению при пластической деформации жаропрочных сплавов значения могут возрасти в 2 раза (с 60 до 120 кгс/мм), растяжение – в 3…4 раза (с 25-30 до 100 кгс/мм), при этом относительное удлинение уменьшается с 40-65 до 5-10%.
  • Малая теплопроводность обрабатываемого материала, приводящая к повышенной температуре в зоне контакта, а, следовательно, к активации явлений адгезии и диффузии, интенсивному схватыванию контактных поверхностей и разрушению режущей части инструмента. Эти явления не позволяют в ряде случаев использовать при обработке жаропрочных материалов недостаточно прочные инструментальные материалы, в первую очередь, твердые сплавы. Вместе с тем при использовании быстрорежущего инструмента по тем же причинам приходится принимать весьма малые скорости резания. Учитывая плохой теплоотвод при обработке жаропрочных и нержавеющих сталей и сплавов, основное значение приобретают охлаждающие свойства СОЖ.
  • Способность сохранять исходную прочность и твердость при повышенных температурах, что приводит к высоким удельным нагрузкам на контактные поверхности инструмента в процессе резания. Усугубляет действие этого фактора низкая теплопроводность этих материалов, благодаря чему высокая температура на контактных поверхностях не позволяет заметно снизить механические свойства по всему сечению срезаемого слоя.
  • Большая истирающая способность жаропрочных и нержавеющих сталей и сплавов, обусловленная наличием в них кроме фазы твердого раствора еще так называемой второй фазы, образующей интерметаллидные или карбидные включения. Эти частицы действуют на рабочие поверхности инструмента подобно абразиву, приводя к увеличенному износу. Большое значение имеют также структурные превращения, происходящие в этих материалах в процессе пластической деформации и сопровождающиеся выпадением карбидов. Все описанные выше твердые включения совместно с высокими температурами на контактных поверхностях приводят к интенсивному абразивному и диффузионному износу режущей части инструмента, к явлениям адгезии (схватывания). Поэтому коэффициенты трения жаропрочных и нержавеющих сталей по твердым сплавам во много раз больше, чем при трении обычной стали 20.
  • Пониженная виброустойчивость движения резания, обусловленная высокой упрочняемостью жаропрочных и нержавеющих материалов при неравномерности протекания процесса их пластического деформирования. Возникновение вибраций приводит к переменным силовым и тепловым нагрузкам на рабочие поверхности инструмента, следовательно, к микро- и макровыкрашиваниям режущих кромок. При наличии вибраций особенно неблагоприятное влияние на износ инструмента оказывают явления схватывания стружки с передней поверхностью инструмента.

       Учитывая  рассмотренные особенности, процесс  резания жаропрочных и нержавеющих  сталей и сплавов протекает таким  образом: вначале рабочие поверхности  инструмента соприкасаются с  относительно мягким, неупрочненным  металлом и под их воздействием происходит пластическая деформация срезаемого слоя, сопровождаемая значительным поглощением прикладываемой извне (инструментом) энергии. При этом срезаемый слой получает большое упрочнение и приобретает свойства наклепанного металла, т. е. становится хрупким. Запас пластичности при этом в значительной мере исчерпывается и происходит сдвиг – разрушение, образование элемента стружки. Малая теплопроводность этих материалов приводит к резкому снижению отвода тепла в стружку и обрабатываемую заготовку, а, следовательно, повышению температуры в зоне контакта режущей части инструмента и заготовки с активизацией процессов адгезии и диффузии. В результате этого значительно увеличиваются износ инструмента и явления налипания (схватывания), вызывающие разрушение режущих кромок. Интенсификации этих процессов способствуют повышенные механические характеристики обрабатываемого материала при высокой температуре, большая истирающая способность материалов, а также переменное воздействие этих факторов, обусловленное вибрациями.

       В настоящее время существует много  способов облегчения обработки резанием труднообрабатываемых материалов, в  том числе жаропрочных и нержавеющих  сталей и сплавов. Самыми очевидными из них являются способы, направленные на повышение стойкости применяемых режущих инструментов. Это, прежде всего, правильный выбор марки инструментального материала и геометрии режущей части инструмента, а также обязательное применение охлаждения в зоне резания с использованием различных охлаждающих сред.

       При обработке жаропрочных и нержавеющих  сталей и сплавов необходимо и  целесообразно применение инструментов, изготовленных из инструментальных материалов, обладающих более высокими режущими свойствами: более высокой  красностойкостью, хорошей сопротивляемостью абразивному износу и стабильностью режущих свойств. Согласно исследованиям, проведенным в этой области целесообразно предварительную обработку труднообрабатываемых материалов производить твердосплавными резцами, а чистовую – твердосплавными и быстрорежущими. Из быстрорежущих сталей при обработке жаропрочных сплавов наилучшие результаты дают применение кобальтовых и ванадиевых быстрорежущих сталей (Р14Ф4, Р10К5Ф5, Р9Ф5, Р9К9). Их применение приводит к значительному сокращению расхода режущего инструмента, снижению себестоимости выпускаемой продукции и повышению производительности.

       Из  применяемых твердых сплавов  выделяют 3 вида. Первый вид, называемый “износостойким” – Т30К4, Т15К6, ВК3 и др. – сравнительно твердый  и обладает высокой сопротивляемостью  износу. Второй вид сплавов – Т5К7, Т5К10 и др. – обладает большей вязкостью, но меньшей износостойкостью. Третий вид – ВК6А, ВК8 – имеет наименьшее сопротивление износу, но большую вязкость и нечувствительность к удару. Кроме того при чистовой и отделочной обработке жаропрочных и нержавеющих сталей и сплавов в качестве инструментальных материалов применяют минералокерамику, а также естественные и синтетические сверхтвердые материалы.

       Существенное  влияние на повышение стойкости  инструментов при резании труднообрабатываемых материалов оказывают специальные методы упрочнения их рабочих поверхностей: хромирование, цианирование, электроискровое упрочнение, радиоактивное облучение и др. для быстрорежущих сталей. А на твердосплавные пластины из прочного (вязкого) твердого сплава наносят тонкий слой (~5мкм) другого твердого сплава (TiC), обладающего высокой износоустойчивостью. Для повышения износоустойчивости минералокерамики применяют плакирование – покрытие защитными пленками.

       Применение  смазывающе-охлаждающих жидкостей при резании металлов увеличивает стойкость режущего инструмента, улучшает качество обработанной поверхности и снижает силу резания. В настоящее время применение технологических сред считают одним из основных способов улучшения процессов резания труднообрабатываемых материалов. Следует отметить, что эффективность применения технологических сред определяется их физико-химическим составом и способом подачи в зону резания.

       Эффективными  являются такие методы охлаждения режущего инструмента, как высоконапорное охлаждение, подаваемое тонкой струей на заднюю поверхность инструмента, охлаждение распыленной жидкостью и охлаждение углекислотой. 
    При высоконапорном охлаждении жидкость, вытекая под большим давлением, распыляется и, соприкасаясь с нагретым металлом, быстро испаряется, интенсивно отбирая тепло. Такое охлаждение дает увеличение стойкости инструмента в 3…6 раз по сравнению с сухим резанием. Еще лучших результатов можно достигнуть применением одновременно высоконапорного охлаждения со стороны задней грани резца и подачи жидкости под давлением сверху на стружку. Недостаток высоконапорного охлаждения – разбрызгивание жидкости и образование паров, затрудняющих наблюдение за работой инструмента.

       Эти недостатки устраняются при охлаждении зоны резания путем распыления СОЖ сжатым воздухом. При этом уменьшается расход эмульсии. Стойкость инструмента увеличивается в 2…3 раза по сравнению с работой всухую.

Информация о работе Основные свойства и особенности обработки жаропрочных и коррозионностойких сталей