Автор: Пользователь скрыл имя, 17 Марта 2013 в 19:01, лекция
Классификация процессов осуществляемых на нефтеперерабатывающих производствах
Методы и последовательность расчета оборудования
Технологический расчет
ЛЕКЦИЯ 1. Классификация и методы расчета оборудования нефтеперерабатывающих заводов …………………………………
ЛЕКЦИЯ 2. Оборудование для разделения жидкостей и лазов..
ЛЕКЦИЯ 3. Электрическая очистка газов ……………………….
ЛЕКЦИЯ 4. Установки химических процессов переработки нефтяного сырья………………………………...................................
ЛЕКЦИЯ 5. Устройство реакторов…………………………………
ЛЕКЦИЯ 6. Материальный баланс аппарата…………………….
ЛЕКЦИЯ 7. Теплообменные аппараты……………………………
ЛЕКЦИЯ 8. Абсорбционные процессы в нефтепереработке…...
ЛЕКЦИЯ 9. Тарельчатые абсорберы………………………………
ЛЕКЦИЯ 10. Общие понятия об адсорбционных процессах……
ЛЕКЦИЯ 11. Десорбционные процессы и аппараты……………
ЛЕКЦИЯ 12. Процесс ректификации и аппараты нефтепереработки…………………………………………………….
ЛЕКЦИЯ 13. Технология процесса ректификации………………
14. ЛЕКЦИЯ 14. Расчет ректификационных колонн……………….
15. ЛЕКЦИЯ 15. Конструкция ректификационных аппаратов……
16. ЛЕКЦИЯ 16. Экстракционные процессы и аппараты………….
17.Литература…………………………………………………………
Трубчатый абсорбер (рис. 40) сходен по устройству с вертикальным кожухотрубчатым теплообменником. Абсорбент поступает на верхнюю трубную решетку 1, распределяется по трубам 2 и стекает по их внутренней поверхности в виде тонкой пленки. В аппаратах с большим числом труб для более равномерной подачи и распределения жидкости по трубам используют специальные распределительные устройства. Газ движется по трубам снизу вверх навстречу стекающей жидкой пленке. Для отвода тепла абсорбции по межтрубному пространству пропускают воду или другой охлаждающий агент.
Абсорбер с плоскопараллельной насадкой (рис. 41). Этот аппарат представляет собой колонну с листовой насадкой в виде вертикальных листов из различного материала (металл, пластические массы и др.) или туго натянутых полотнищ из ткани. В верхней части абсорбера находятся распределительные устройства 2 для равномерного смачивания листовой насадки с обеих сторон.
Абсорбер с восходящим движением пленки (рис. 42) состоит из труб, закрепленных в трубных решетках 2. Газ из камеры 3 проходит через патрубки 4, расположенные сносно с трубами . Абсорбент поступает в трубы через щели 5. Движущийся с достаточно большой скоростью газ увлекает жидкую пленку в направлении своего движения (снизу вверх), т. е. аппарат работает в режиме восходящего прямотока. По выходе из труб 1 жидкость сливается на верхнюю трубную решетку и выводится из абсорбера.
Для отвода тепла абсорбции по межтрубному пространству пропускают охлаждающий агент. Для увеличения степени извлечения применяют абсорберы такого типа, состоящие из двух или более ступеней, каждая из которых работает по принципу прямотока, в то время как в аппарате в целом газ и жидкость движутся противотоком друг к другу. В аппаратах с восходящим движением пленки, вследствие больших скоростей газового потока (до 30— 40 м/сек) достигаются высокие значения коэффициентов массопередачи, но, вместе с тем, гидравлическое сопротивление этих аппаратов относительно велико.
Посадочные абсорберы
Широкое распространение в промышленности в качестве абсорберов получили колонны, заполненные насадкой — твердыми телами различной формы. В насадочной колонне (рис. 13) насадка укладывается на опорные решетки 2, имеющие отверстия или щели для прохождения газа и стока жидкости. Последняя с помощью распределителя 3 равномерно орошает насадочные тела и стекает вниз. По всей высоте слоя насадки равномерного распределения жидкости по сечению колонны обычно не достигается, что объясняется пристеночным эффектом большей плотностью укладки насадки в центральной части колонны, чем у ее стенок. Вследствие этого жидкость имеет тенденцию растекаться от центральной части колонны к ее стенкам. Поэтому для улучшения смачивания насадки в колоннах большого диаметра насадку иногда укладывают слоями (секциями) высотой 2—3 м, и под каждой секцией, кроме нижней, устанавливают перераспределители жидкости 4.
В насадочной колонне жидкость течет по элементу насадки главным образом в виде тонкой пленки, поэтому поверхностью контакта фаз является в основном смоченная поверхность насадки, и насадочные аппараты можно рассматривать как разновидность пленочных. Однако в последних пленочное течение жидкости происходит по всей высоте аппарата, а в на-садочных абсорберах — только по высоте элемента насадки. При перете-кании жидкости с одного элемента насадки на другой пленка жидкости разрушается и на нижележащем элементе образуется новая пленка. При этом часть жидкости проходит через расположенные ниже слои насадки в виде струек, капель и брызг. Часть поверхности насадки бывает смочена неподвижной (застойной) жидкостью.
Основными характеристиками насадки являются ее удельная поверхность а (м2/м3) и свободной объем (м3 /м3). Величину свободного объема для непористой насадки обычно определяют путем заполнения объема насадки водой. Отношение объема воды к объему, занимаемому насадкой, дает величину . В соответствии с формулой (dэ= ) эквивалентный диаметр насадки. dэ= =
Вопросы для проверки
ЛЕКЦИЯ 9
ТАРЕЛЬЧАТЫЕ АБСОРБЕРЫ
План
Барботажные (тарельчатые) абсорберы
Тарельчатые абсорберы представляют собой, как правило, вертикальные колонны, внутри которых на определенном расстоянии друг от друга размещены горизонтальные перегородки—тарелки. С помощью тарелок осуществляется направленное движение фаз и многократное взаимодействие жидкости и газа.
В настоящее время в промышленности применяются разнообразные конструкции тарельчатых аппаратов. По способу слива жидкости с тарелок барботажные абсорберы можно подразделить на колонны: 1) с тарелками со сливными устройствами и 2) с тарелками без сливных устройств.
Тарельчатые колонны со сливными устройствами. В этих колоннах перелив жидкости с тарелки на тарелку осуществляется при помощи специальных устройств — сливных трубок, карманов и т. п. Нижние концы трубок погружены в стакан на нижерасположенных тарелках и образуют гидравлические затворы, исключающие возможность прохождения газа через сливное устройство. |
|
Принцип работы колонн такого типа виден из рис. 45, где в качестве примера показан абсорбер с сетчатыми тарелками. Жидкость поступает на верхнюю тарелку, сливается с тарелки на тарелку через переливные устройства 2 и удаляется из нижней части колонны. Газ поступает в нижнюю часть аппарата, проходит последовательно сквозь отверстия или колпачки каждой тарелки. При этом газ распределяется в виде пузырьков и струй в слое жидкости на тарелке, образуя на ней слой пены, являющийся основной областью массообмена и теплообмена на тарелке. Отработанный газ удаляется сверху колонны.
Переливные трубки располагают на тарелках таким образом, чтобы жидкость на соседних тарелках протекала во взаимнопротивоположных направлениях. За последнее время все шире применяют сливные устройства в виде сегментов, вырезанных в тарелке и ограниченных порогом — переливом.
К тарелкам со сливными устройствами относятся: ситчатые, колпач-ковые, клапанные и балластные, пластинчатые.
Гидродинамические режимы работы тарелок. Эффективность тарелок любых конструкций в значительной степени зависит от гидродинамических режимов их работы. Поэтому до описания основных конструкций тарелок рассмотрим эти режимы.
- В зависимости от
скорости газа и плотности
орошения различают три
Пузырьковый режим. Такой
режим наблюдается при
Пенный режим. С увеличением расхода газа выходящие из отверстия и прорези отдельные пузырьки сливаются в сплошную струю, которая на определенном расстоянии от места истечения разрушается вследствие сопротивления барботажного слоя с образованием большого количества пузырьков. При этом на тарелке возникает газо-жидкостная дисперсная система — пена, которая является нестабильной и разрушается сразу же после прекращения подачи газа. В указанном режиме контактирование газа и жидкости происходит на поверхности пузырьков и струй газа, а также на поверхности капель жидкости, которые в большом количестве образуются над барботажным слоем при выходе пузырьков газа из барботажного слоя и разрушении их оболочек. При пенном режиме поверхность контакта фаз на барботажных тарелках максимальна.
Струйный (инжекционный) режим. При дальнейшем увеличении скорости газа длина газовых струй увеличивается, и они выходят на поверхность барботажного слоя, не разрушаясь и образуя большое количество крупных брызг. Поверхность контакта фаз в условиях гидродинамического режима резко снижается.
Колпачковые тарелки. Менее чувствительны к загрязнениям, чем колонны с сетчатыми тарелками, и отличаются более высоким интервалом устойчивой работы колонны с колпачковыми тарелками (рис. 46). Газ на тарелку поступает по патрубкам 2, разбиваясь затем прорезями колпачка 3 на большое число отдельных струй. Прорези колпачков наиболее часто выполняются в виде зубцов треугольной или прямоугольной формы. Далее газ проходит через слой жидкости, перетекающей по тарелке от одного сливного устройства 4 к другому. При движении через слой значительная часть мелких струй распадается и газ распределяется в жидкости в виде пузырьков. Интенсивность образования пены и брызг на колпачковых тарелках зависит от скорости движения газа и глубины погружения колпачка в жидкость.
На рис. 47 показана схема работы колпачка при неполном (а) и полном (б) открытии прорезей, причем в последнем случае колпачок работает наиболее эффективно. Сечение и форма прорезей колпачка имеют второстепенное значение, но желательно устройство узких прорезей, так как при этом газ разбивается на более мелкие струйки, что способствует увеличению поверхности соприкосновения фаз. Для создания большей поверхности контакта фаз на тарелках обычно устанавливают значительное число колпачков, расположенных на небольшом расстоянии друг от друга.
Колпачковые тарелки изготовляют с радиальным или диаметральным переливами жидкости. Тарелка с радиальным переливом жидкости (рис. 49, а) представляет собой стальной диск 1, который крепится на прокладке 2 болтами 3 к опорному кольцу 4. Колпачки 5 расположены на тарелке в шахматном порядке. Жидкость переливается на лежащую ниже тарелку по периферийным сливным трубкам 6, движется к центру и сливается на следующую тарелку по центральной трубке 7, затем снова течет к периферии и т. д.
Тарелка с диаметральным переливом жидкости (рис. Х1-21, б) представляет собой срезанный с двух сторон диск 1, установленный на опорном листе 2. С одной стороны тарелка ограничена приемным порогом 5, а с другой — сливным порогом 4 со сменной гребенкой 5, при помощи которой регулируется уровень жидкости на тарелке. В тарелке этой конструкции периметр слива увеличен путем замены сливных трубок сегментообразными отверстиями, ограниченными перегородками 6, что снижает вспенивание жидкости при ее переливе.
На рис.50 показана распространенная конструкция штампованного капсюльного колпачка. Он состоит из патрубка ), который развальцован в отверстии тарелки 2, и планки 3, приваренной к верхней части патрубка. К планке с помощью болта 4 крепится колпачок 5 диаметром 80—150 мм, закрепляемый на требуемой высоте контргайкой.
Колпачковые тарелки устойчиво работают при значительных изменениях нагрузок по газу и жидкости. К их недостаткам следует отнести сложность устройства и высокую стоимость, низкие предельные нагрузки по газу, относительно высокое гидравлическое сопротивление, трудность очистки. Поэтому колонны с колпачковыми тарелками постепенно вытесняются новыми, более прогрессивными конструкциями тарельчатых аппаратов.
Клапанные и балластные тарелки (рис. 51). Эти тарелки получают за последнее время все более широкое распространение, особенно для работы в условиях значительно меняющихся скоростей газа.
Принцип действия клапанных тарелок (рис. 51, а, б) состоит в том, что свободно лежащий над отверстием в тарелке круглый клапан 1 с изменением расхода газа своим весом автоматически регулирует величину площади зазора между клапаном и плоскостью тарелки для прохода газа и тем самым поддерживает постоянной скорость газа при его истечении в барботажный слой. При этом с увеличением скорости газа в колонне гидравлическое сопротивление клапанной тарелки увеличивается незначительно. Высота подъема клапана ограничивается высотой кронштейна-ограничителя 2 и обычно не превышает 8 мм. Пластинчатые клапаны (рис. 51, в) работают так же, как и круглые. Они имеют форму неравнобокого уголка, одна из полок которого (более длинная) закрывает прямоугольное отверстие в тарелке. Круглые клапаны имеют диаметр 45—50 мм, отверстия под клапаном делают диаметром 35—40 мм при шаге между ними 75—150 мм. Высота подъема клапанов 6,5—8 мм.
Балластные тарелки (рис. 51, г) отличаются по устройству от клапанных тем, что в них между легким круглым клапаном 1 и кронштейном-ограничителем 2 установлен на коротких стойках, опирающихся на тарелку, более тяжелый, чем клапан, балласт 3. Клапан начинает подниматься при небольших скоростях газа. С дальнейшим увеличением скорости газа клапан упирается в балласт и затем поднимается вместе с ним. Балластные тарелки отличаются более равномерной работой и полным отсутствием провала жидкости во всем интервале скоростей газа.
Достоинства клапанных
и балластных тарелок: сравнительно
высокая пропускная способность
по газу и гидродинамическая
Информация о работе Оборудование нефтеперерабатывающих предприятий и основы проектирования