Автор: Пользователь скрыл имя, 14 Мая 2012 в 21:15, реферат
Ткачество существует, по-видимому, еще со времен каменного века, причем источник сырья был природным и органическим – шерсть, лен, хлопок, конопля, а также шелк. Двадцатый век ознаменовался всплеском интереса к синтетическим тканям – нейлона, лавсана, капрона. Теперь же интерес новаторов обратился в область нанотехнологий и все новые сферы нашей жизни и быта обогащаются разного вида нанотканями.
1. Введение
Ткачество существует, по-видимому, еще со времен каменного века, причем источник сырья был природным и органическим – шерсть, лен, хлопок, конопля, а также шелк. Двадцатый век ознаменовался всплеском интереса к синтетическим тканям – нейлона, лавсана, капрона. Теперь же интерес новаторов обратился в область нанотехнологий и все новые сферы нашей жизни и быта обогащаются разного вида нанотканями.
Наноткани получают все большее распространение во всех сферах жизни. В первую очередь ткани с применением нанотехнологий используются в производстве одежды. Это всевозможные несминаемые ткани, которые не нужно гладить благодаря особому покрытию волокон. Это не пачкающаяся одежда и ковры, поверхность которых покрыта микроскопическим ворсом, с которого скатываются, не впитываясь, капельки воды и частицы грязи и пыли, так что ее можно просто смахнуть тряпкой. Наконец, это пресловутые наноноски, в хлопковую ткань которых включены серебряные наночастицы, которые обеззараживают ткань и убивают бактерии, создающие неприятный запах.
Новым веянием в производстве одежды становится пьезоэлектроника – создание в ткани наноструктурной сети, вырабатывающей электричество из трения. От куртки из такой ткани можно будет подзаряжать телефон или планшетник прямо на ходу.
Однако наноткани применяются не только в создании одежды. Год назад, например, исследователи из Таиланда запустили в производство москитные сетки с нанокапсулами, содержащими инсектицид пиретроид. Благодаря особой технологии присоединения к волокнам ткани наночастиц, такие сетки можно стирать без ущерба для их свойств.
Другим направлением применения нанотканей является медицина. Обычный бинт защищает рану от попадания бактерий извне, но не спасает от внутреннего сепсиса. Половина людей, поступающих в больницы с обширными ожогами умирает именно в результате инфекции. Однако недавно учеными была создана ткань с мощным антибактериальным действием, которое обеспечивают присоединенные к волокнам нанокапсулы, содержащие молекулы антисептика, который высвобождается только при высокой концентрации микроорганизмов в очаге заражения.
Также в наноткани содержится флуоресцентное вещество, которое прореагирует на высокую концентрацию бактерий и подаст врачам сигнал о распространении заражения.
2. Виды направлений нанотехнологий в тканевом производстве
Развитие работ в области «умных волокон» идет в двух направлениях:
1 Колористическом
2 Интеллектуальном.
1 Колористическое направление связано с разработкой принципиально новых видов армейского камуфляжа и развитием моды, предлагающей одежду с необычными цветовыми эффектами. Суть их состоит в использовании фото-, термо- и гидрохромных красителей. Окрашенные ими ткани могут изменять цвет под действием воды, тепла и света подобно хамелеонам. Изменения могут иметь локальный характер неопределенной формы и четко выраженный рисунок на тех или иных деталях или участках одежды.
Работы по использованию термо-, фотохромных красителей и материалов для военных целей и космоса начали интенсивно развиваться в 70-е годы прошлого века. По уровню разработок камуфляжа впереди идут США и Япония. Интенсивные исследования проводятся в Китае, Южной Корее, Тайване. Ткани-«хамелеоны», способные изменять свой цвет в зависимости от внешних факторов – идеальный материал для армейского камуфляжа. Подобно коже живых рептилий защитная одежда военного сможет мимикрировать, адаптируясь к изменениям окружающей среды.
Реализация этих идей весьма заманчива и интересна для армии, но в, то, же время достаточно сложна и пока не осуществлена полностью, поскольку, в отличие от бытовой одежды, к армейскому камуфляжу предъявляются очень жесткие требования по устойчивости окрасок к действию светопогоды, трению, стиркам и химчистке.
2 Интеллектуальное направление в развитии умного текстиля – это создание и промышленное освоение технологий, обеспечивающих получение текстильных материалов с широким набором новых свойств, расширяющих области их применения. В первую очередь работы в этом направлении были связаны с армейскими заказами.
«Умные» ткани должны уметь «следить» за сердечным ритмом солдата, вводить, если необходимо, соответствующие лекарства или купировать раны, сигнализировать о самочувствии больного. Одежда из «умных» тканей должна самоочищаться, поддерживать требуемую температуру в
пододежном пространстве, нейтрализовать химические отравляющие вещества, обладать свойствами бронежилета.
Экипировка военного должна при этом оставаться легкой, не стесняющей движений, а система связи, включая дисплей компьютера и клавиатуру, быть не только легкой, но и мягкой, способной изменять свою конфигурацию. Реализовать подобное «чудо» и сделать его явью стало возможным в связи с интеграцией наукоемких технологий (hi-tech) в текстильное производство. Ведущую роль в этом сыграли нанотехнологии.
3. Производство нановолокон
Нановолокна можно производить, наполняя традиционные волокнообразующие полимеры отличающимися по конфигурации наночастицами различных веществ или путем выработки ультратонких (диаметром в рамках наноразмеров) волокон.
Наполненные наночастицами волокна начали производить с 1990 года. Такие волокна малоусадочны, имеют пониженную горючесть, повышенную прочность на разрыв и истирание и в зависимости от природы вводимых наночастиц могут приобретать другие защитные свойства, требующиеся человеку.
В качестве наполнителей волокон широко используют углеродные нанотрубки с одной или несколькими стенками. Волокна, наполненные нанотрубками, приобретают уникальные свойства – они в 6 раз прочнее стали и в 100 раз легче ее. Наполнение волокон углеродными наночастицами на 5-20% от массы придает им также сопоставимую с медью электропроводность и химическую устойчивость к действию многих реагентов.
Углеродные нанотрубки используются в качестве армирующих структур, блоков для получения материалов с высокими прочностными свойствами: экранов дисплеев, сенсоров, хранилищ жидкого топлива, воздушных зондов и т.д. Например, при наполнении углеродными нанотрубками поливинилспиртового волокна, получаемого по коагуляционной технологии прядения, оно становится в 120 раз выносливее, чем стальная проволока и в 17 раз легче, чем волокно Кевлар. Кевлар - самое известное и прочное арамидное химволокно, получаемое по традиционной технологии и используемое в бронежилетах. Подобные нановолокна уже сейчас начинают применять для производства взрывозащищающей одежды и одеял, защиты от электромагнитных излучений.
Очень ценные и полезные свойства химические волокна приобретают при наполнении их наночастицами глинозема. Наночастицы глинозема в виде мельчайших хлопьев обеспечивают высокую электро- и теплопроводность, химическую активность, защиту от ультрафиолетового излучения, огнезащиту и высокую механическую прочность. У полиамидных волокон, содержащих 5% наночастиц глинозема, на 40% повышается разрывная нагрузка и на 60% – прочность на изгиб. Такие волокна используют в производстве средств защиты от ударов, например защитных касок. Известно, что
полипропиленовые волокна очень трудно окрашиваются, что существенно ограничивает область их применения в производстве материалов бытового назначения. Введение 15% наночастиц глинозема в структуру полипропиленовых волокон обеспечивает возможность крашения их различными классами красителей с получением окрасок глубоких тонов.
Интенсивно развиваются исследования и производство синтетических волокон, наполненных наночастицами оксидов металлов: ТiO2, Al2O3, ZnO, MgО. Волокна приобретают следующие свойства:
- фотокаталитическую активность;
- УФ-защиту;
- антимикробные свойства;
- электропроводность;
- грязеотталкивающие свойства;
- фотоокислительную способность в различных химических и биологических условиях.
Еще одним интересным направлением в производстве нановолокон является придание им ячеистой, пористой структуры с наноразмерами пор. При этом достигается резкое снижение удельной массы (получение легких материалов), хорошая теплоизоляция, устойчивость к растрескиванию. Образующиеся нанопоры волокон могут быть заполнены различными жидкими, твердыми и даже газообразными веществами с различным функциональным назначением (медицина, ароматизация текстильных полотен, биологическая защита).
Другой тип нановолокон – ультратонкие волокна, диаметр которых не превышает 100 нм. Эта тонина обеспечивает высокое значение удельной поверхности и, как следствие, высокое удельное
содержание функциональных групп. Последнее обеспечивает хорошую сорбционную способность и каталитическую активность материалов из подобных волокон.
В Европе (Англия, Франция), США, Израиле и Японии параллельно идут интенсивные работы по созданию синтетических белковых волокон, имитирующих структуру паутины, имеющей непревзойденные физико-механические свойства. Используя для выработки подобного белка другие продуценты (микроорганизмы, растения), удалось получить полимерные белковые нановолокна толщиной около 100 нм. Мягкий и сверхпрочный «паучий шелк» сможет заменить жесткий и негибкий кевлар в бронежилетах. Области применения «паучьего шелка» разнообразны: это и хирургические нити, и невесомые и чрезвычайно прочные бронежилеты, и легкие удочки, и
рыболовные снасти. Пока речь идет о малых партиях, но нанотехнологии развиваются столь бурно и стремительно, что промышленного выпуска изделий, изготовленных из «паучьего шелка», ждать недолго.
Ароматные ткани
Идея выпуска ароматизированных тканей витала в мире моды давно. Известно много попыток в этом направлении. Однако запахи были слишком резкие и сильные или быстро улетучивались. Создать ароматные текстильные материалы с мягким ненавязчивым парфюмом пролонгированного действия долго не удавалось. Успех пришел только в конце прошлого века.
Химикам известны соединения, которые благодаря своему строению обладают удивительным и важным свойством –
способностью к образованию с различными веществами комплексов типа «хозяин-гость», называемых инклюзионными комплексами, соединениями-включениями, клатратами. Такой комплекс представляет собой соединение, в котором в полость молекулы «хозяина» включена молекула «гостя» без образования прочных химических связей. Подобный комплекс не влияет на физические и химические свойства «гостя», но «хозяин» способен его удержать подле себя определенное время. Подбирая соответствующие габариты «гостя» и «хозяина» и удерживающую силу последнего, можно запрограммировать и рассчитать длительность пребывания в «гостях». При создании душистых текстильных материалов «гостями» стали химические соединения, обладающие запахами. Комплексы-включения обладают эффектом пролонгированного действия, и запах способен сохраняться в течение длительного времени. Особое распространение и популярность ткани с парфюмом получили в Азии.
Большое внимание созданию душистых тканей уделяет компания Woolmark, которая в содружестве с одним из подразделений английской фирмы ICI разработала технологию Sensory Percention Technology TN, открывающую широкие возможности для производства разнообразных ароматных тканей и экологичных видов текстильной продукции. Ароматические вещества подвергаются нанокапсулированию и вводятся в волокнистый материал. Капсулы устойчивы к воздействию влаги, стирке и химчистке, заключенные в них ароматные вещества не испаряются и не разлагаются при действии окислителей. Капсулы активизируются в момент движения или соприкосновения, выделяя скрытые в них ароматы в окружающую среду. Это происходит при одевании или снятии одежды, чистке ковровых покрытий или мебельных тканей.
Нанотехнологии в заключительной отделке
При заключительной отделке текстильных материалов используют наночастицы различных веществ в виде наноэмульсий и нанодисперсий. При этом материалам могут придаваться такие свойства, как водо- и маслостойкость, пониженная горючесть, противозагрязняемость, мягкость, антистатический и антибактериальный эффекты, термостойкость, формоустойчивость и др. Наиболее известной нанотехнологией заключительной отделки является отделка Teflon,