Автор: Пользователь скрыл имя, 25 Августа 2011 в 21:03, курс лекций
Диагностика представляет собой процесс исследования объекта диагноза. Завершением этого исследования является получение результата диагноза, т.е. заключение о состоянии объекта (объект исправен, объект не исправен, в объекте имеется такая то неисправность). Диагностика – отрасль знаний, включающая в себя теорию и методы организации процессов диагноза, а так же принципы построения средств диагноза. Когда объектом диагноза является объекты технической природы, говорят о технической диагностике.
Для экспоненциального закона ® P(t + t) = e-l(t + t); P(t) = e-lt; P(t) = e-lt.
В интервале времени (t + t) вероятность безотказной работы не зависит от времени работы t, а зависит от t.
Пример.
l = 0,01 (1/час); t = 50 (час).
Значит: Р(50) = е-0б01 · 50 = е-0,05 = 0,0607 Т = 1/l = 100 (час).
Распределение Рема:
d-параметр распределения Рема.
Пример: d = 100r, t = 50r.
P(50) =
Нормальное распределение:
Y – распределение:
l0, к –параметр. Y-распределение.
При к =1 Y параметр переходит в экспоненциальное распределение.
Распределение Вейбула:
l1, m – Параметры распределения Вейбула.
При m =1 распределение
Вейбула переходит в экспоненту; при m=2
в распределение Релея.
Появление
отказов и сбоев можно
Эта формула позволяет рассчитать вероятность появление отказа в промежутке времени t. Простейший поток характеризует три свойства времени: стационарностью, отсутствием последействия, ординарностью.
Стационарность - указывает, что вероятность появления определенного числа событий за заданный период, времени который не зависит от положений этого периода на оси времени, а зависит только от его действительности.
Отсутствие последействия – характерно тем, что вероятность появления определенного числа событий за заданный период времени независящий от числа и характеризующий события, происходящие до этого времени.
Ординарность - означает не возможность одновременного появления двух и более событий.
Простейший поток получается если:
l(t) = l =cons t; P(t) =e-lt;
С экспоненциальным законом хорошо согласуются законы распределения отказов для сложных систем, состоящих из многих элементов.
Это объясняется тем, что закон распределения интервалов м/д соседними событиями в потоке редких случайных событий составленных из многих неизвестных потоков с любыми характеристиками, которые сходятся к экспоненциальному закону.
Закон случайных
величин применим к задачам надежных
изделий и их технической жизни.
(0, t1) - первый период повышенных интенсивных отказов. Это связано с выявлением дефектов при изготовлении.
(t1, t2) – второй период, характеризующий постоянные значения интенсивных отказов. Это участок нормальной эксплуатации изделия.
(t2, ¥) Третий период, характеризующий повышенную интенсивность отказов. Здесь начинается процесс старения.
Второй период характеризует эксплуатацию и распределение.
Первый и третий период
При
m < 1 распределение Вейбула можно использовать
для оценки надежности изделий при наработке
стажа по прошествии времени.
Методы
расчета надежности.
Для
расчета надежности радиоэлектронной
аппаратуры в зависимости от ее надежности
(не восстанавливаемость и
Для расчета надежности без учета восстановления используется два метода: графовероятностный и логико-вероятностный. Прежде всего, необходимо определить критерии отказа сбоя систем.
Критерии отказа систем являются нарушением способности этой системы выполнять свое назначение, при этом могут не соответствовать выходные параметры и будут применены какие от действия по известным нормам.
При создании математической модели структуры технической системы выявятся ее критерии, при которых определяется состояние элементов составляющих данную систему. В этом случае каждый из элементов может находиться в двух состояниях работоспособном и неработоспособном. Второе состояние выражает отказ системы. Состояние системы определяется совокупностью состояния ее элементов. Критерии отказа позволяют все множество элементов разделить на два подмножества
Для сложной структуры анализ надежности системы сводится к представлению системы в виде некоторого элемента.
Графовероятностный метод. Основывается на представлении схемы расчета надежности в виде связного двухполюсного графа, имеющего два полюса: входной и выходной. Физически это можно представить как определение возможности прохождение некоторого сигнала от входа некоторой системы характерной сетевой структуры, к выходу.
Схемы распределения надежности различают по критерию работоспособности или отказа. Всевозможные структуры систем можно свести к последовательным и комбинированным.
Последовательные системы называются системы, которые работоспособны тогда, когда работоспособны все ее элементы. Если говорить о состоянии отказа, то последовательные системы отказывают, если отказывает хотя бы один ее элемент.
Обозначим: n – число элементов в последовательной системе, а событие состояний в работоспособной 8 – го элемента через х8, а событие состояний b работоспособность всей системы через s, тогда схема расчета надежности по критерию работоспособности и отказа и по дереву работоспособности и отказа будут иметь следующий вид: в дереве работоспособности базисное событие, определяемое работоспособность элементов х8, связано между собой логическими звеньями, а в дереве отказов базисное событие, определяемое, отказами элементов х8 связано между собой логическими звеньями или (v) ® схема расчета по критерию работоспособности изображена ниже:
Схема распределения по критерию отказа. Схема расчета по дереву работоспособности.
Схема
расчета по дереву отказа.
На рисунках
соединены исходный узел А узлом
Е расчеты, на схеме расчет надежности
существует тогда, когда работоспособны
все ее элементы. Из рисунка б) видно, что
система отказывает, если хотя бы 1 элемент,
поэтому начальные и конечные сигналы
всех веток должны совпадать с начальным
узлом системы А и конечным Е. Все события
на рисунках представляют схему со включенными
элементами.
Надежность последовательной системной оценки определяется формулой:
Где
Pi(t) коэффициент надежности. I –
его элементная система.
Параллельные
системы.
Называется
такая система, которая работоспособна,
если работоспособен хотя бы 1 из ее элементов,
т.е. система отказывает тогда, когда
отказывают все элементы. События
состоят в том, что восьмой элемент работоспособен
обозначим его как х8 где х8
= 1, 2…, n, n – число в системе. События состояния
отказа s, тогда схема работоспособна и
расчет по критерию работоспособности
и отказа будет иметь следующий вид:
Схема
расчета по критерию
работоспособности.
Схема расчета по критерию отказа.
Схема
расчета по дереву
работы.
Отказ.
где Pi(t) –надежность i- того элемента.
Вторая формула
пригодна для равно наделенных элементов.
Надежность
системы с последовательно
параллельной структурой.
Для последовательно параллельной структуры эффективным является метод свертки. Он основан на поэтапном преобразовании этой структуры в последовательные структуры.
;
;
Метод
свертки.
Схема мажоритарного регулирования
Информация о работе Классификация отказов, параметры надежности