Электроэрозионная обработка

Автор: Пользователь скрыл имя, 15 Декабря 2011 в 07:38, реферат

Описание работы

Высокоэффективные электрофизические методы разработаны для облегчения обработки резанием некоторых конструкционных материалов. К труднообрабатываемым материалам относятся: высоколегированные стали аустенитного класса, жаро- и кислотностойкие, специальные никелеферритные никелевые стали, тугоплавкие сплавы, композиционные материалы, неметаллические материалы.
Фундаментальные исследования в области защиты металлов от различных повреждений привели к разработке ряда технологий – нанесение двухслойных металлокерамических покрытий, механоультрозвуковая, химико-термическая обработка, на конец электроэрозионная. Все это привело к существенному улучшению свойств материалов.

Содержание

Введение
1. История возникновения электрических методов обработки
2. Общая характеристика процесса электроэрозионной обработки
2.1. Сущность электроэрозионной обработки
2.2. Рабочая среда
2.3. Электроды-инструменты
3. Разновидности электроэрозионной обработки
3.1. Электроискровая обработка
3.2. Электроимпульсная обработка
3.3. Высокочастотная обработка
3.4. Электроконтактная обработка
3.5. Область применения
4. Электроэрозионное оборудование
4.1. Компоновка
4.2. Генераторы импульсов
Заключение
Список литературы

Работа содержит 1 файл

эфмодм.doc

— 625.00 Кб (Скачать)

     Обработку ведут в ваннах заполненных диэлектрической жидкостью. Жидкость исключает нагрев электродов (инструмента и заготовки), охлаждает продукты разрушения, уменьшает боковые разряды между инструментом и заготовкой, что повышает точность обработки.

     Для обеспечения непрерывности процесса обработки необходимо, чтобы зазор  между инструментом – электродом и заготовкой был постоянным. Для  этого электроискровые станки снабжают следящий системой и механизмом автоматической подачи инструментов. Инструменты – электроды изготовляют из меди, латуни, меднографитовых и других материалов. [7]

     В эрозионных станках используют различные  ГИ электрических разрядов: RC (резистор – емкость); RLC (L – индуктивность); LC; ламповые генераторы. В промышленности применяют широкодиапозонные транзисторные ГИ. Эти генераторы потребляют мощность 4…18 кВт при силе тока 16…125 А. Эффективность обработки составляет 75…1900 мм ³/мин при шероховатости обработанной поверхности 4…0,2 мкм. [8]

     Электроискровым методом обрабатывают практически все токопроводящие материалы, но эффект эрозии при одних и тех же параметрах электрических импульсов различен. Зависимость интенсивности эрозии от свойств материалов называют электроэрозионной обрабатываемостью. Если принять электроэрозионную обрабатываемость стали за единицу, то для других металлов ее можно представить следующих относительных единицах: твердые сплавы – 0,5; титан – 0,6; никель – 0,8; медь – 1,1; латунь – 1,6; алюминий – 4; магний – 6.

     Электроискровым методом целесообразно обрабатывать твердые сплавы, труднообрабатываемые материалы и сплавы, тантал, молибден и другие материалы.

     Электроискровым методом получают сквозные отверстия  любой формы поперечного сечения, глухие отверстия и полости, фасонные отверстия и полости по способу  терепонации, отверстия с криволинейными осями; вырезают заготовки из листа, выполняют плоское, круглое и внутреннее шлифование, разрезают заготовки, клеймят детали.

     Электроискровую обработку применяют для изготовления деталей штампов и пресс-форм, фильер, режущего инструмента, деталей топливной аппаратуры двигатели внутреннего сгорания, сеток и сит.

     Электроискровую обработку применяют также для  упрочнения поверхностного слоя металлов деталей машин, пресс-форм, режущего инструмента. Упрочнение состоит в  том, что на поверхность изделий наносят тонкий слой какого-либо металла, сплава или композиционного материала. Подобные покрытия повышают твердость, износостойкость, жаростойкость, эрозионную стойкость и другие характеристики изделий.

     На  ограниченных участках особо нагруженной поверхности детали можно проводить сложнейшие микрометаллургические процессы.

     Из  электроэрозионных станков с  системами ЧПУ наибольшее распространение  в промышленности имеют координатнопрошивочные, копировально – вырезные и универсальные  копировально – прошивочные. [5]

     Координатно – прошивочные станки работают по позиционной системе ЧПУ, что  позволяет автоматически по заданной программе устанавливать (позиционировать) заготовку относительно инструмента в необходимое положение. Обработку ведут профилированным инструментом. Во время обработки заготовка перемещений не имеет.

     Копировально  – вырезные станки работают по контурной  системе ЧПУ. Обработку ведут  непрофилированным инструментом –  бесконечным электродом – проволокой. Применяют медную, латунную, вольфрамовою, молибденовую проволоку диаметром 0,02…0,3 мм. Программное устройство станков обспечивают не только регулирование движений формообразования, но и регулирование технологического режима – напряжения на искровом промежутке. Особенность процесса вырезки состоит в наличии переменной эквидистанты, зависящей от ширины прорезаемого паза. Следовательно, устройство ЧПУ станков должны обеспечивать коррекцию эквидистанты. В станках такого типа системы ЧПУ обеспечивают управление по четырем и более координатным осям. [3]

     В универсальных копировально-прошивочных электроэрозионных станках используют две системы ЧПУ: систему адаптивного управления с предварительным набором координат и режимов по программе и систему адаптивно – программного управления по трем координатным осям. В станках этого типа системы ЧПУ обеспечивают планетарное движение заготовки в следующем режиме, автоматическое позиционирование заготовки и автоматическую смену инструмента. Электроискровая обработка широко применяется для прорезки пазов, вырезки по контуру, для изготовления штампов, пресс-форм, фильер, режущих инструментов и других. Хорошо обрабатываются твердые сплавы, тантал, вольфрам, молибден и другие. К недостаткам процесса относят: сравнительно низкую производительность обработки, большой износ электродов и образование на деталях дефектного слоя толщиной 0,05…0,5 мм. 

     3.2 Электроимпульсная  обработка 

     Основана  на использовании импульсов дугового разряда. Предложена советским специалистом М.М. Писаревским в 1948. Этот метод стал внедряться в промышленность в начале 1950-х гг. В отличие от искрового, дуговой разряд имеет температуру плазмы ниже (4000–5000 °С), что позволяет увеличивать длительность импульсов, уменьшать промежутки между ними и т. о. вводить в зону обработки значительные мощности (несколько десятков квт), т. е. увеличивать производительность обработки. Характерное для дугового разряда преимущественно разрушение катода приводит к тому, что износ инструмента (в этом случае он подключается к аноду) ниже, чем при электроискровой обработке, составляя 0,05–0,3 % от объёма снятого материала (иногда инструмент вообще не изнашивается). Более экономичный электроимпульсный метод используется в основном для черновой обработки и для трёхкоординатной обработки фасонных поверхностей. Оба метода (электроискровой и электроимпульсный) дополняют друг друга. [1]

     При электроимпульсной обработке используют электрические импульсы большей  длительности. Большие мощности импульсов, получаемых от электронных генераторов, обеспечивают высокую производительность процесса обработки. Применение генераторов и гтафитовых электродов, а также обработка на обратной полярности позволили уменьшить разрушение электродов.

     Электроимпульсную обработку наиболее целесообразно  применять при предварительной  обработке штампов, турбинных лопаток, твердосплавных деталей, фасонных отверстий в деталях из корозионно-стойких сталей и жаропрочных сплавов. В станках для электроимпульсной обработке широко используют различные системы программного управления. Высокоточная конструкция станков с чувствительными сервосистемами позволяет изготовлять детали сложной геометрической формы с высокой точностью.

     Приборы автоматического переключения на разные подачу и глубину резания, управляемые  системой ЧПУ, обеспечивают оптимальное  использование электроэрозионных станков, так как в зависимости от хода процесса обработки режим работы согласуется с технологическими требованиями к деталям. Применяемые адаптивные системы программного управления позволяют своевременно определять отклонения в ходе обработки и устранить их. Изменения параметров процесса обработки вносятся в устройства, формирующее сигнал коррекции что позволяет с помощью простых электродов изготовлять детали сложных геометрических форм, в частности полостей штампов. [8]

     Качество  поверхности зависит от режимов обработки. Грубый режим приводит к получению высоты неровностей Ra=50…6,3 мкм и изменению поверхностного слоя глубиной 0,2…0,4 мм. При чистовом режиме достигается шероховатость поверхности Ra 6,3…1,25 мкм. Обработка ведется в жидком диэлектрике, инструмент автоматически подается в направлении обработки, что обеспечивает постоянство зазора. Для обработки используются специальные станки разных моделей с машинными генераторами, высокочастотными установками, электронными генераторами и т. д. Высокоточные станки с различными системами программного управления позволяют изготовлять детали со сложными формами.

     Метод считается целесообразным для предварительной  обработки фасонных поверхностей штампов, лопаток, инструментов. Применяется  он и для обработки твердых, нержавеющих и жаропрочных сплавов. 

     3.3 Высокочастотная  обработка 

     Электроискровую обработку применяют для повышения  точности и уменьшение шероховатости  поверхностей, обработанных электроэрозионным  методом. Метод основан на использовании электрических импульсов малой мощности при частоте 100…150 кГц.

     При высокочастотной электроискровой  обработке конденсатор разрежается  при замыкании первичной цепи импульсного трансформатора прерывателем, вакуумной лампой или тиратроном. Инструмент-электрод и заготовка включены во вторичную цепь трансформатора, что исключает возникновение дугового разряда.

     Производительность  метода в 30…50 раз выше, чем при  электроискровом методе, при значительном увеличении точности и уменьшении шероховатости  поверхности. Износ инструмента незначителен. [8]

     Высокочастотный электроискровой метод применяют  при обработки заготовок из твердых  сплавов, так как он исключает  структурные изменения и образование  микротрещин в поверхностном  слое материала обрабатываемой заготовки. [2] 

     3.4 Электроконтактная обработка 

     Основана  на локальном нагреве заготовки в месте контакта с электродом-инструментом и удалении размягченного или даже расплавленного металла из зоны обработки механическим способом: относительным движением заготовки и инструмента. Источником теплоты в зоне обработки служат импульсные дуговые разряды. Электроконтактную обработку оплавлением рекомендуют для обработки крупных деталей из углеродистых и легированных сталей, чугуна, цветных сплавов, тугоплавких и специальных сплавов.

     Метод применяют при зачистке отливок  от заливов, от резке литниковых систем и прибылей, зачистке проката из спецсплавов, черновом круглом наружном, внутреннем и плоском шлифовании корпусных деталей машин из труднообрабатываемых сплавов, шлифовании с одновременной поверхностной закалкой деталей из углеродистых сталей. Метод обработки не обеспечивает высокой точности и качества поверхности, но дает высокую производительность съема металла вследствие использования больших электрических мощностей. [7]

     Электроконтактная обработка основана на введении в зону механической обработки электрической энергии – возбуждении мощной дуги переменного или постоянного тока между, например, диском, служащим для удаления материала из зоны обработки, и изделием. Преимущества метода – высокая производительность (до 106мм3/мин) на грубых режимах, простота инструмента, работа при относительно небольших напряжениях, низкие удельные давления инструмента – 30–50 кн/м2 (0,3 – 0,5 кгс/см2) и, как следствие, возможность использования для обработки твёрдых материалов инструмента, изготовленного из относительно мягких материалов. К недостаткам относят: большую шероховатость обработанной поверхности, тепловые воздействия на металл при жёстких режимах.

     Электроконтактная обработка не обеспечивает высокой точности и качества поверхности (шероховатость поверхности около50 мкм), но приводит к высокой производительности вследствие значительного съема металла. Применяется она для резки заготовок, обдирки отливок, заточки инструмента, плоского шлифования, прошивки отверстий, очистки от окалины, обработки криволинейных поверхностей т. д. Рекомендуется для обработки углеродистых и легированных сталей, чугуна, цветных сплавов, тугоплавких, труднообрабатываемых и специальных сплавов.

     Разновидностью  электроконтактной обработки является электроабразивная обработка – обработка абразивным инструментом (в т. ч. алмазно-абразивным), изготовленным на основе проводящих материалов. Введение в зону обработки электрической энергии значительно сокращает износ инструмента. [4] 

     3.5 Область применения (ЭЭО) 

     Типовые операции электроэрозионной обработки. По технологическим признакам устанавливаются  следующие виды ЭЭО:

     1. Прошивание отверстий: При ЭЭО прошивают отверстия на глубину до 20 диаметров с использованием стержневого ЭИ и до 40 диаметров – трубчатого ЭИ. Глубина прошиваемого отверстия может быть значительно увеличена, если вращать ЭИ, или обрабатываемую поверхность, или и то и другое с одновременной прокачкой РЖ через ЭИ или с отсосом ее из зоны обработки. Скорость электроэрозионного прошивания (ЭЭПр) достигает 2–4 мм/мин.

     2. Маркирование: Маркирование выполняется нанесением на изделие цифр, букв, фирменных знаков и др. Электроэрозионное маркирование обеспечивает высокое качество, не вызывает деформации металла и не создает зоны концентрации внутреннего напряжения, которое возникает при маркировании ударными клеймами. Глубина нанесения знаков может колебаться в пределах от 0,1 до 1 мм. Операция может выполняться одним ЭИ и по многоэлектродной схеме. Изготавливаются ЭИ из графита, меди, латуни, алюминия. Производительность составляет около 3–8 мм/с. Глубина знаков зависит от скорости движения электрода. При скорости движения электрода более 6 мм/с четкость знаков ухудшается. В среднем на знак высотой 5 мм затрачивается около 4 c.

     3. Вырезание: В основном производстве электроэрозионное вырезание (ЭЭВ) применяют при изготовлении деталей электро-вакуумной и электронной техники, ювелирных изделий и т. д. в инструментальном производстве, при изготовлении матриц, пуансонов, пуансонодержателей и других деталей, а также вырубных штампов, копиров, шаблонов, цанг, лекал, фасонных резцов и др.

Информация о работе Электроэрозионная обработка