Электрический расчет и автоматизация электротермической установки

Автор: Пользователь скрыл имя, 15 Января 2011 в 23:13, курсовая работа

Описание работы

В курсовой работе выполнены расчеты нагревательных элементов для: электро-калорифера, бытового тепловентилятора, проточного электроводонагревателя приближенным методом по рабочему току. Произведен расчет нихромовой спирали бытового тепловентилятора по удельной мощности и сравнение результатов расчетов с предыдущими. Приведен обзор материалов, используемых при изготовлении нагревателей (электрокалорифера,проточного водонагревателя) и конструктивные особенности ЭТУ. Рассмотрены симметричные и неполнофазные режимы трехфазного электрокалорифера для различных схем их включения. В разделе по автоматизации электрокалорифера принята базовая принципиальная схема установки и рассмотрены варианты ее усовершенствования. Даны основные положения техники безопасности при эксплуатации электрокалорифера.

Работа содержит 1 файл

Электрический расчет и автоматизация электротермической установки.rtf

— 1.89 Мб (Скачать)

     В зависимости от температурного режима и технологических условий нагреваемой cреды для изготовления электрических нагревателей используют металлические и неметаллические материалы. Для низко- и средне-температурных установок широко применяют специальные сплавы: хромоникелевые и железохромоникелевые. Наиболее распространены нихромы. В низкотемпературных установках ( до 620 К) электрические нагреватели выполняют из дешевого и доступного материала -- углеродистой стали. Неметаллические нагреватели используют нагреваватели используют в высокотемпературных установок. В ЭТУ с рабочей температурой до 1570 К применяют стержневые цилиндрические нагреватели из карборунда, а с температурой до 1870 К -- из дисилицида молибдена. В высокотемпературных вакуумных печах с температурой нагрева до 3270 К используют графитовые нагреватели в виде стержней, трубок, пластин и другой формы.

     Электрические нагреватели из карборунда, дисилицида и графита обладают высоким сопротивлением и переменными температурным коэффициентом сопротивления. Питание на эти нагреватели подается от понижающего трансформаторов с регулируемым вторичным напряжением.

     В качестве электроизоляционного наполнителя ТЭНов используется периклаз (плавленый оксид магния, который получают в дуговых электропечах, плавкой магнийсодержащих веществ). К данному наполнителю предъявляются следующие требования:

     - низкая удельная электропроводимость;

     - высокая электрическая прочность;

     - химическая нейтральность;

     - достаточно высокий коэффициент теплопроводности;

     - низкая влагопоглащаемость;

     - достаточная сыпучесть.

     В качестве оболочек ТЭНов используют тонкостенные металлические трубы ( латунные, алюминиевые, стальные)

     Латунь - до 250 °C;

     Алюминий - до 350 °C;

     Углеродистая сталь - до 450 °C;

     Нержавеющая сталь - до 750 °C;

     Основным требованием предъявляемым к оболочке является механическая прочность, для защиты нагревательного элемента от механических повреждений.

     Для повышения долговечности нагревателей применяют защитные покрытия (хромникелевые и др.). Такие покрития увеличивают ресурс нагревателей в несколько раз при работе в водных растворах.

     Для герметизации ТЭНов прииеняют:

     - кремнийорганические лаки и эмали;

     - эпоксидные герметики;

     - битумную мастику;

     - легкоплавкое стекло.

     3. Расчеты симметричных и неполнофазных режимов трехфазной ЭТУ (электрокалорифера)

 

     Регулировать мощность электрической нагревательной установки мы будем, изменяя схему включения нагревателей.

     Рассчитаем варианты регулирования для электрического калорифера.

     U=220 ВP=1000 Втt0=20 °С tp=800 °С

     3.1 Двойной треугольник

 

     

     Рис. 3. Двойной треугольник. 

     а) При данной схеме включения каждый нагреватель находится под номинальным напряжением, а значит будет отдавать полную мощность. Так как двойной треугольник содержит шесть нагревательных элементов, то общая мощность равна: 

      Вт 

     б) При обрыве линейного провода в точке А (см. рис.3) под напряжением остаются все шесть нагревательных элементов, но четыре из них только под напряжением равным половине номинального. Следовательно, мощность, выделяемая на одном элементе, получается равная: 

      Вт 

     Полная мощность тогда получается: 

      Вт 

     где n1 - количество нагревателей находящихся не под номинальным напряжением, шт.;

     P1 - мощность, отдаваемая нагревателем, находящимся не под номинальным напряжением, Вт.

     в) При обрыве фазы в точках В (см. рис.3) мы получаем, что два нагревателя не включены вообще, а остальные находятся под номинальным напряжением. Следовательно, число нагревателей в работе будет четыре. 

      Вт

     3.2 Звезда

 

     

     Рис.4. Звезда 

     а) При включении нагревателей по схеме звезда, каждый нагреватель находится под фазным напряжением. Следовательно, нагреватели включены на напряжение равное . Так как - то если напряжение уменьшить в раз, то, мощность, выделяемая на нагревательном элементе получается меньше в 3 раза. Следовательно, полная мощность, отдаваемая схемой, вычисляется по формуле: 

      Вт 

     б) При обрыве линейного или фазного провода в точке А (см. рис.4) в работе оказываются только два нагревателя и включены они на половину линейного напряжения, следовательно, мощность, выделяемая ими, вычисляется так:  

      Вт

     3.3Треугольник

     

     Рис.5. Треугольник 

     а) При данной схеме включения каждый нагреватель находится под

     номинальным напряжением, а значит будет отдавать полную мощность. Данная схема содержит три нагревательных элемента. 

      Вт

     б) При обрыве линейного провода в точке А (см. рис.5) под напряжением остаются все три нагревательных элементов, но два из них только под напряжением равным половине номинального. Следовательно, мощность, выделяемая на одном элементе, получается равная: 

      Вт 

     Полная мощность тогда получается: 

      Вт 

     где n1 - количество нагревателей находящихся не под номинальным напряжением, шт.; P1 - мощность, отдаваемая нагревателем, находящимся не под номинальным напряжением, Вт.

     в) При обрыве фазы в точке В (см. рис. 5) мы получаем, что один нагревателя не включен вообще, а остальные находятся под номинальным напряжением. Следовательно, число нагревателей в работе будет два. 

      Вт 

     3.4 Двойная звезда 

     

     Рис.6. Двойная звезда 

     а) При включении нагревателей по схеме звезда, каждый нагреватель находится под фазным напряжением. Следовательно, нагреватели включены на напряжение равное . Так как то если напряжение уменьшить в раз, то мощность выделяемая на нагревательном элементе получается меньше в 3 раза. Следовательно, полная мощность, отдаваемая схемой, вычисляется по формуле: 

      Вт 

     б) При обрыве линейного или фазного провода в точке А (см. рис.6) в работе оказываются только четыре нагревателя и включены они на половину линейного напряжения, следовательно, мощность, выделяемая ими, вычисляется так:  

      Вт

     3.5 Последовательный треугольник

 

     а) При включении нагревателей по такой схеме каждый нагреватель находится под напряжением равным половине номинального, а следовательно, мощность на каждом нагревателе уменьшается в четыре раза. Полная мощность нагревателя включенного по такой схеме вычисляется так: 

      Вт 

 

     

     Рис. 7. Последовательный треугольник 

     б) При обрыве линейного провода в точке А (см. рис.7) у нас получается, что четыре нагревателя включены на четвертую часть номинального напряжения, а два - на половину. Мощность, отдаваемая в этом случае, вычисляется по формуле:

     

      Вт 

     в) При обрыве фазы в точке В (см. рис. 7) у нас два нагревателя не участвуют в работе, а следовательно, в работе участвуют четыре нагревателя включенных на половинное напряжение. Полная мощность в этом случае вычисляется следующим образом: 

      Вт

     3.6 Последовательная звезда

 

     Рис. 8. Последовательная звезда

 

      а) При включении нагревателей по такой схеме каждый нагреватель находится под напряжением равным , а следовательно, мощность на каждом нагревателе уменьшается в раза. Полная мощность нагревателя включенного по такой схеме вычисляется так: 

      Вт 

     б) При обрыве линейного или фазного провода в точке А (см. рис.8) в работе оказываются только четыре нагревателя и включены они на четверть линейного напряжения, согласно зависимости мощности выделяемой на нагревательном элементе от подводимого напряжения получаем: 

      Вт 

     Все полученные данные сводим в таблицу 6. 

     Таблица 5. Сводная таблица.

     
Схема включения Симметричная 3ф. нагрузка Обрыв линейного провода Обрыв фазы
нагревателей число нагревателей в работе , кВт число нагревателей в работе , кВт число нагревателей в работе , кВт
Двойной треугольник 6 6 6 3 4 4
Звезда 3 1 2 0,5 2 0,5
Треугольник 3 3 3 1,5 2 2
Двойная звезда 6 2 4 1 4 1
Последовательный треугольник 6 1,5 6 0,75 4 1
Последовательная звезда 6 0,5 4 0,25 4 0,25

 

      4. Принципиальная электрическая схема автоматизации электрокалорифера 

     Электрокалориферные установки предназначены для подогрева воздуха в системах вентиляции на животноводческих и птицеводческих фермах, что способствует созданию в них оптимального микроклимата. Электрокалориферная установка типа СФОЦ рассчитана на питание от сети переменного трёхфазного тока с глухозаземлённой нейтралью напряжением 380\ 220 В. Схема соединения оребрённых трубчатых электронагревателей - “звезда”. Установка состоит из центробежного вентилятора, унифицированного электрокалорифера типа СФО и шкафа управления с пускорегулирующей аппаратурой. Электрокалорифер и вентилятор смонтированы на сварной металлической раме. Для снижения вибрации предусмотрена установка виброизоляторов и мягкие вставки. В установке предусмотрено автоматическое регулирование мощности по температуре воздуха в вентилируемом помещении. Схема регулирования - позиционная, т.е. при достижении заданной температуры установка отключается, а при понижении температуры на определённый интервал снова включается. ТЭНы электрокалорифера секционированы на три ступени мощности, которые в процессе эксплуатации могут переключатся. Перключение осуществляется автоматически или вручную. Автоматическое переключение осуществляется по сигналам датчиков температуры, установленных в обогреваемом помещении. Положение датчиков в помещении определяется опытным путём при регулировании теплового режима установки.

Информация о работе Электрический расчет и автоматизация электротермической установки