Автор: Пользователь скрыл имя, 11 Февраля 2011 в 02:21, курсовая работа
Элементы и системы автоматического электропривода разнообразны и отличаются по физической природе, принципам действия, схемам, конструкциям и пр. Система электроавтоматики — это совокупность объекта управления и электрического автоматического управляющего устройства, взаимодействующих между собой. Системы и устройства электроавтоматики выполняют такие задачи, как контроль, сигнализация, блокировка, защита и автоматическое управление.
Введение……………………………………………………………………….. 5
1 Описание рабочей машины и ее технологического процесса, исходные данные для проектирования…………………………………………………..
6
2 Расчет моментов статических сопротивлений и предварительный расчет мощности электродвигателя………………………………………….
7
3 Обоснование выбора рода тока и типа электропривода………………….. 11
4 Выбор электродвигателя, определение передаточного числа и выбор редуктора……………………………………………………………………….
12
5 Расчет приведенных статических моментов, моментов инерции и коэффициента жесткости системы электропривод - рабочая машина……..
15
6 Проверка двигателя по производительности, нагреву, перегрузочной способности и условиям пуска………………………………………………..
19
7 Выбор и расчет системы управления электроприводом, расчет статических характеристик электропривода………………………………...
22
8 Описание работы системы управления электроприводом……………….. 26
Заключение…………………………………………………………………….. 29
Список использованной литературы………………………………………… 30
Рисунок 9 – Схема реверсивного тиристорного электропривода
типа
КТЭУ
Обозначение элементов в схеме:
M, LM – двигатель постоянного тока и обмотка возбуждения, UZ1 – реверсивный тиристорный преобразователь в цепи якоря, UZ2 – тиристорный возбудитель, TV – трансформатор, LF – токоограничивающий реактор, QF1, QF2, QF3 – автоматические выключатели, КМ1 – линейный контактор, ТА – трансформаторы тока, RS1, RS2 – шунты в цепи тока якоря и тока возбуждения, RP1 – делитель напряжения на якоре, PA1, PA2, PV – измерительные приборы, BR – тахогенератор, СУЯ – система управления UZ1 с регулятором тока якоря, СУВ – система управления возбудителем UZ2, UA1 – датчик тока якоря, А1(РС) – регулятор скорости, UV1 – датчик напряжения на якоре, UV2 – датчик скорости, UA2(ДТВ) – датчик тока возбуждения, А2(РТВ) – регулятор тока возбуждения, U1(ФП) – функциональный преобразователь зависимой системы ослабления поля, Uзс – напряжение задания скорости, Uзв – напряжение задания тока возбуждения.
Тиристорный преобразователь UZ1 состоит из двух встречно включенных мостов, получает питание от сети через автоматический выключатель QF1 и трансформатор TV (возможна установка токоограничивающих реакторов). Якорь двигателя подключен к выходу UZ1 через автоматический выключатель QF3 и линейный контактор КМ1.
Тиристорный возбудитель UZ2 подключается к сети через автоматический выключатель QF2 и токоограничивающий реактор LF.
Система управления электроприводом обеспечивает двухзонное регулирование скорости. В первой зоне регулирование скорости осуществляется изменением напряжения на якоре системой подчиненного регулирования с внутренним контуром тока якоря и внешним контуром скорости. Вторую зону регулирования скорости обеспечивает зависимая система ослабления поля с внутренним контуром регулирования тока возбуждения и внешним контуром регулирования ЭДС двигателя.
Электропривод имеет различные типы защит:
– от внутренних и внешних коротких замыканий ;
– от перенапряжений на якоре и обмотке возбуждения;
– от снижения тока возбуждения ниже допустимого и т.д.
Я выбрал тиристорный преобразователь типа КТЭУ-100/220-13223-УХЛ4. Комплектный тиристорный электропривод унифицированный – Iн=100А, Uн=220В, 1–однодвигательный, 3–реверсивный с изменением полярности напряжения на якоре, 2– связь с сетью – с трансформатором, 2– регулируемый параметр – скорость, двухзонное регулирование, 3– с линейным контактором в силовой цепи, УХЛ – исполнение для районов с умеренным и холодным климатом, 4 – размещение в закрытых отапливаемых помещениях.
Заключение
В данной курсовой работе разработана схема автоматизации толкателя методической печи, подобрана соответствующая аппаратура управления, контроля и защиты.
Также описана рабочая машина и ее технологический процесс, рассчитаны моменты статических сопротивлений и сделан предварительный расчет мощности электродвигателя, обоснован выбор рода тока и типа электропривода, выбран электродвигатель, определены передаточные числа и выбран редуктор, описана работа системы управления электроприводом.
Поставленные
цели и задачи выполнены в достаточном
объеме.
Список использованной
литературы
Информация о работе Автоматизированное электропривода толкателя методической печи