Закон больших чисел и его значение в правовой статистике

Автор: Пользователь скрыл имя, 17 Марта 2012 в 01:13, контрольная работа

Описание работы

В решении важнейшей задачи — установления и количествен­ного выражения закономерностей и взаимозависимости социальных явлений статистическая наука опирается на закон больших чисел (ЗБЧ), смысл которого состоит в том, что правильности и за­кономерности социальных явлении могут быть обнаружены только при их массовом наблюдении.

Содержание

1 Закон больших чисел и его значение в правовой статистике 3
2 Статические таблицы и их виды 6
Задача 1 8
Задача 2 9
Список используемой литературы

Работа содержит 1 файл

Правовая статистика(контрольная)!!!-word 2003.doc

— 111.00 Кб (Скачать)


 

Министерство образования и науки

Государственное образовательное учреждение

Высшего профессионального образования

«Самарский Государственный Университет»

Юридический факультет

 

Кафедра__________________

__________________

__________________

 

 

 

КОНТРОЛЬНАЯ РАБОТА

                                  по курсу: «Правовая статистика»

                                 

Вариант № 3

 

Выполнил: студент

3 курса заочного отделения

юридического факультета

09303.30 группы

Несмеянова Дарья Сергеевна

 

САМАРА 2011

Содержание

1 Закон больших чисел и его значение в правовой статистике                                                   3

2 Статические таблицы и их виды                                                                                                        6

    Задача 1                                                                                                                                                   8

    Задача 2                                                                                                                                                    9

Список используемой литературы                                                                                                       10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Закон больших чисел и его значение в правовой статистике

В решении важнейшей задачи — установления и количествен­ного выражения закономерностей и взаимозависимости социальных явлений статистическая наука опирается на закон больших чисел (ЗБЧ), смысл которого состоит в том, что правильности и за­кономерности социальных явлении могут быть обнаружены только при их массовом наблюдении.

Конечно, всякая наука, каждая в своей области, имеет дело с мас­совыми явлениями, ибо в законе отражается массовидное, суще­ственное, необходимое. И хотя любая закономерность носит об-ший, а потому массовый характер, но в статистике понятие массовости специфично. Оно становит­ся очевидным, если вспомнить деление закономерностей на ди­намические и статистические . Статистика оперирует не родовыми, а групповыми понятиями, в которых речь идет о сред­них результатах, и то время как в родовых — о каждой входящей в него единице. Поэтому в правовой статистике знание о правонарушаемости  как статистической совокупности не есть одновре­менно знание о конкретных преступлениях, входящих в нее. Хо­тя в данном случае статистик имеет дело не с чисто случайными явлениями, а с индивидуальными, которым присущи случайные отклонения.

В этом и заключается специфика статистического количест­венного анализа социальных процессов, в котором проявляется смысл закона больших чисел: сделанные на его основе выводы, обнару­женная тенденция, закономерность относятся к совокупности («большому числу») как таковой. То есть ЗБЧ лежит в основе са­мой логики статистического умозаключения; на основе ЗБЧ вы­является массовая закономерность[1].

Для статистических закономерностей весьма характерно слож­ное переплетение внутренних и внешних причин, необходимого и случайного.

И эти закономерности образуются отнюдь не в ходе «игры слу­чая», а прежде всего в результате действия внутренних необходи­мых причин. Множество вариаций и случайных отклонений, сглаживаются (элиминируют) именно в массе, что приводит к образованию статистических закономерностей. Проявление такой закономерности и есть результат действия за­кона больших чисел, которое состоит в том, что совокупность боль­шого числа случайных явлений имеет определенные, не завися­щие от случая характеристики, выражаемые количественными показателями. То есть представление о ЗБЧ и его действии нель­зя отрывать от представления о статистической закономерности как формы, в которую облекается закономерность массового яв­ления, изучаемая статистикой с количественной стороны. При­чем ЗБЧ проявляется тем отчетливее, чем крупнее статистичес­кая совокупность.

Массовые закономерности, а вместе с ними и ЗБЧ проявля­ются в самых различных областях действительности. Особенно на­глядны они в демографии, в криминальной статистике. Так, в странах с рыночной экономикой в рабочей среде рождаемость и смертность обратно пропорциональны уровню заработной пла­ты; во всех странах с высокой продолжительностью жизни женщины долговечнее мужчин; смертность мужчин во всех возраст­ных когортах, начиная с детской и кончая самой пожилой, в 2— 3 раза превышает смертность женщин; постоянную величину состав­ляют число браков, половое распределение преступников, мотивов, орудий убийств; обнаруживает­ся значительная устойчивость несчастных случаев в отдельные периоды года и часы суток; по данным русской почтово-телеграфной статистики, констатировалась значительная устойчивость вы­нутых на каждый миллион из почтовых ящиков писем (1906—1910 гг.) без указания адресата (25—27) или без указания места назначе­ния (21—29) и др.В малом числе наблюдений (например, отдельные преступле­ния) случайные факторы не дают возможности обнаружить зако­номерность. Напротив, при суммировании большого числа еди­ничных явлений случайности парализуют друг друга, что позво­ляет установить законы, которые при малых масштабах маскиру­ются индивидуальными отклонениями. Статистическая закономерность — это не особая форма дви­жения материи, а лишь внешнее проявление этого движения в статистических распределениях и обобщающих статистических характеристиках. Статистически установленные правильности в изменениях количественных показателей, повторяемость и ус­тойчивость фактов свидетельствуют лишь о том, что в исследуе­мом массовом явлении заложена известная закономерность, вскрытие которой составляет задачу соответствующей науки (на­пример, криминологии).

Закономерность массового явления, объективные связи, зало­женные в этом явлении, находят свое выражение не в отдельных показателях, а в средней величине, в характере распределения. Сред­няя арифметическая большого числа случайных величин — прак­тически величина не случайная, а необходимая, закономерная[2]. В эТом-то и состоит действие ЗБЧ, если подходить к его трактовке с философско-методологических позиции. Поэтому иногда ЗБЧ называют еще законом средних величин.

Рассмотрение ЗБЧ как одного из законов объективной дейст­вительности вместе с тем исключает его отношение к уровню кон­статированных им обобщающих статистических характеристик. Этот уровень определяется условиями, вытекающими из самой при­роды массового явления. Правильно отмечается, что ЗБЧ не со­здает уровней, а лишь регулирует случайные отклонения от задан­ных природой данного явления уровней1.

Из сказанного ясно, что ЗБЧ основывается на понятии случай­ности и вероятности — уменьшение степени случайности и возрас­тание степени вероятности наличия определенного признака проис­ходит по мере увеличения статистической совокупности. Это может быть проиллюстрировано таким примером: если известно, что на­селение города представлено соотношением 48% мужчин и 52% жен­щин, то небольшая совокупность людей (например, посетителей театра, футбольного матча и т.д.) может значительно отклониться от этих характеристик; если же увеличивать исследуемую совокуп­ность, то последует приближение к указанным характеристикам.

Естественнонаучное обоснование, точная формулировка и ус­ловия применимости ЗБЧ даются в теории вероятностей. Други­ми словами, теория вероятностей является математическим обос­нованием ЗБЧ. С ее помощью вычисляются шансы возможного наступления случайного события.

Вероятность— математическая, числовая характеристика сте­пени возможности появления какого-либо определенного собы­тия в тех или иных определенных, могущих повторяться неогра­ниченное число раз условиях2.

Вероятность обычно обозначается буквой Р. Например, выражение Р(Л) = 0,5 означает, что вероятность наступления события Л равна 0,5.

Вероятность принято классифицировать по следующей шкале:

0,00 — полностью исключено

0,10 — в высшей степени неопределенно .

0,20 — весьма неправдоподобно

0,30—0,40 — неправдоподобно

0,60 — вероятно

0,70 — весьма вероятно

0,80—0,90 — в высшей степени вероятно

1,00 — полностью достоверно.

Таким образом, вероятность получает определенное количест­венное выражение, несмотря на то, что наличие того или иного признака или его колебания является случайным.

Если в урну поместить черный и белый шары, то при выемке одинаково можно обнаружить любой из них. При этом проявля­ется альтернативная изменчивость, которая заключается в возмож­ности лишь двух исходов: из урны можно вынуть только белый шар либо только черный шар. То же происходит и при подбрасывании монеты. Это обстоятельство одинаковой возможности выпада­ния любой стороны монеты называется равновозможностью. Со­бытие называется равновозможным, если нет причин, делающих одно из этих событий более возможным, чем другое. Событие на­зывается несовместимым в том случае, когда появление одного де­лает появление другого невозможным.

При многократном подбрасывании монеты или при многократ­ной выемке шаров из урны образуется совокупность единичных опытов, которая обладает свойствами статистической совокупно­сти. В отдельном опыте результат может быть различным — орел или решка, черный или белый шар, а в совокупности опытов про­является определенная закономерность в соотношении между числом выпавших гербов и решек или числом вынутых черных и бе­лых шаров.

Результат каждого единичного опыта с монетой или шарами также зависит от двух групп факторов: основных, связанных со свой­ствами явления, и случайных, не связанных с этими свойствами. Однако удобством монетной или урновой модели является, во-пер­вых, то, что в ней легко отделить основные причины и свойства явления от побочных; во-вторых, на этой модели легко просле­дить, как действует каждая группа причин и что является резуль­татом действия каждой из них.

В рассматриваемых примерах главное свойство монеты — ее симметричность, в силу чего при подбрасывании шансы на вы­падение герба или решки совершенно равны; главное свойство ур­ны с шарами — соотношение между числом черных и белых ша­ров. Если, например, в урне 100 черных и 100 белых шаров, то при выемке одного шара шансы на появление черного или бе­лого шара совершенно одинаковы, а если в урне в два раза боль­ше черных, чем белых, то соответственно больше и шансов вы­емки черного шара.

Чтобы априори, т.е. до опыта, определить вероятность наступ­ления какого-либо случайного явления, нужно знать число шан­сов, благоприятствующих его наступлению, а также число всех воз­можных шансов (как благоприятствующих, так и неблагоприятствующих). Отношение первой величины ко второй называется математической вероятностью. Она выражается в виде дроби, где в числителе указывается число благоприятствующих шансов, а в знаменателе — число всех возможных шансов. Например, при подбрасывании монеты возможны два исхода. Если считать выпадение орла благоприятным исходом, то вероятность его рав­на 1/2. Если считать благоприятным исходом появление черно­го шара из урны, в которой находится 70 черных шаров и 30 бе­лых шаров, то вероятность благоприятного исхода при выемке од­ного шара равна 70/100, а вероятность неблагоприятного исхода равна 30/100.

Если вероятность благоприятного исхода обозначить р, а ве­роятность неблагоприятного исхода q, то во всех случаях альтер­нативной изменчивости, т.е. когда возможны лишь два исхода, p + q= 1. В опыте с шарами 70/100 + 30/100 = 1, в опыте с монетой 1/2 + 1/2 = 1.

Веро­ятность является оценкой степени объективной возможности то­го или иного результату при отборе на удачу одной единицы из всей совокупности.

Это определение вероятности, данное П.С.Лапласом, являет­ся определением простейшей, так называемой классической веро­ятности, приложимой к весьма узкому кругу явлений. Для мас­совых (например, правонарушений) более подходит статистиче­ское или частотное понятие вероятности, определяемое как по­стоянное число, вокруг которого колеблются частости.

Применение теории вероятностей к социальным явлениям, в ча­стности к преступности, обусловлено наряду с независимостью от­дельных событий (иррегулярностью преступлений) еще и их из­вестной устойчивостью.

Преступность представляет типичную статистическую сово­купность, обладающую относительно устойчивыми характерис­тиками, позволяющими конкретно изучать ее и даже прогнозиро­вать ее изменения. Поэтому «невозможно говорить об определен­ной вероятности преступления как о «незыблемой закономерно­сти». Она меняется вместе с изменением условий. Но пока дей­ствуют данные определенные условия, действует и та или иная оп­ределенная вероятность. Это и дает возможность изучения этих явлений на основе методов математической статистики». Если условия в си­лу определенных причин остаются неизменными, то в среднем ус­тойчиво и число преступлений, что позволяет установить вероятность, с которой они совершаются[3].

 

2 Статистические таблицы и их виды

 

Особое место в статистике занимает табличный метод, который имеет универсальное значение. С помощью статистических таблиц осуществляется представление данных результатов статистического наблюдения, сводки и группировки. Поэтому обычно статистическая таблица определяется как форма компактного наглядного представления статистических данных.

Анализ таблиц позволяет решать многие задачи при изучении изменения явлений во времени, структуры явлений и их взаимосвязей. Таким образом, статистические таблицы выполняют роль универсального средства рационального представления, обобщения и анализа статистической информации.

Внешне статистическая таблица представляет собой систему построенных особым образом горизонтальных строк и вертикальных столбцов, имеющих общий заголовок, заглавия граф и строк, на пересечении которых и записываются статистические данные.

Каждая цифра в статистических таблицах — это конкретный показатель, характеризующий размеры или уровни, динамику, структуру или взаимосвязи явлений в конкретных условиях места и времени, то есть определенная количественно-качественная характеристика изучаемого явления[4].

Если таблица не заполнена цифрами, то есть имеет только общий заголовок, заглавия граф и строк, то мы имеем макет статистической таблицы. Именно с его разработки и начинается процесс составления статистических таблиц.

Основными элементами статистической таблицы являются подлежащее и сказуемое таблицы.

Подлежащее таблицы — это объект статистического изучения, то есть отдельные единицы совокупности, их группы или вся совокупность в целом.

Сказуемое таблицы — это статистические показатели, характеризующие изучаемый объект.

Подлежащее и показатели сказуемого таблицы должны быть определены очень точно. Как правило подлежащее располагается в левой части таблицы и составляет содержание строк, а сказуемое — в правой части таблицы и составляет содержание граф.

Информация о работе Закон больших чисел и его значение в правовой статистике