Статистическое изучение модификационной изменчивости

Автор: Пользователь скрыл имя, 17 Января 2011 в 18:12, контрольная работа

Описание работы

Предметом изучения биометрии являются варьирующие (изменяющиеся) признаки у относительно однородной группы объектов, называемой совокупностью.

Различают совокупность генеральную и выборочную, или случайную, которую называют выборка.

Работа содержит 1 файл

Статистическое изучение модификационной изменчивостиПостроение вариационных рядов.doc

— 175.50 Кб (Скачать)

Например, вес спортсменов max = 67 кг, min = 42, lim = 67–42 = 25 кг.

Основным  показателем изменчивости является среднее квадратическое отклонение. Среднее квадратическое или стандартное отклонение – это статистическая величина, которая показывает, насколько признак, присущий данному варианту, отклоняется от средней арифметической для данной выборки.

 Среднее квадратическое отклонение обозначают либо греческой буквой S, либо сигма.  Для малых выборок среднее квадратическое отклонение вычисляют по формуле : 

      Вычисление  среднего квадратического отклонения для малых выборок производят в следующем порядке:

  1. Находят отклонение каждого варианта от средней арифметической для данной выборки, т.е. устанавливают центральные отклонения.
  2. Центральные отклонения возводят в квадрат, чтобы избавиться от отрицательных чисел.
  3. Находят сумму квадратов.

Пример. Представлена совокупность, состоящая из 5 особей. Все они имеют одинаковый возраст и относятся к одной группе. Нужно вычислить среднюю длину их тела и среднее квадратическое отклонение этого признака.

1. Составим  простой вариационный ряд (табл.3)

Таблица 3

Показатели  вариационного ряда Особи

№1     №2     №3     №4     №5

Статистические  показатели
Варианты  ряда (длина тела в см) 45        40      38       35       32 Средняя арифметическая

Х ср= 38 см

Отклонение  каждой варианты от средней арифметической X–Xср +7        +2       0     –3         –6 Сумма всех отклонений

S (Х –Хср) = 0

Квадраты  отклонений

(X–Xср)2

49        4          0       9         36 Сумма квадратов  отклонений S (Х –Хср)2 = 98
 

2. Вычислим среднюю  арифметическую Х:

  

    1. Вычислим отклонения размеров длины тела от средней арифметической

       (Х–Хср) и полученные данные проставим в таблицу.

    1. Так как сумма отклонений всегда равна нулю S (Х–Хср) = 0, то отклонения следует возвести в квадрат и определить сумму квадратов отклонений. В данном примере они будут равны:

      S (Х–Хср)2 = 49+4+0 + 9 + 36 = 98;

      Вычисление среднего квадратического  отклонения

      для больших выборок

Задание. Вычислить среднее квадратическое отклонение (S) для данной  группы спортсменов по весу

  1. Составить вариационный ряд (табл. 4).
  2. Определить частоту (р) значений веса в каждом классе.
  3. Найти условные отклонения (а) от условного среднего класса.
  4. Найти произведение частоты на условное отклонение (графа 5).
  5. Условное отклонение возвести в квадрат (графа 4).
  6. Вычислить произведение частоты на квадрат условного отклонения (графа 6).
  7. По формуле вычислить среднее квадратическое отклонение:

Таблица 4

Вычисление  среднего квадратического  отклонения

Границы классов

(Wн–Wв)

Частоты

(р)

Условные  отклонения
(а) (а)2 ра ра2
42 –45 1 –3 9 –3 9
46 –48 5 –2 4 –10 20
49 –  51 12 –1 1 –12 12
52 –  54 14 0 0 0 0
55 –  57 8 1 1 8 8
58 –  60 6 2 4 12 24
61 –  63 2 3 9 6 18
64 –  67 2 4 16 8 32
Sр = n = 50 Sра = 9       Sра2 = 123
 
 

      Нужно обратить внимание на то, что S имеет два знака (+ и –). Это свидетельствует об отклонении вариант от средней арифметической как в положительную, так и в отрицательную сторону. Среднее квадратическое отклонение  является показателем разнообразия признака. Согласно правилу 3 S   почти все варианты должны укладываться в интервал от –3 S   до +3 S, если минимальный вариант (min  вес ) не ниже Х–3S, а максимальный (max  вес) не выше Хср+3 S, то наблюдения ведутся над однородной генеральной совокупностью.

      В нашем примере Хср + 3 S = 53,5 + 14,04 = 67,54

                        Хср – 3 S = 53,5 – 14,04 = 39,46

Как видим, минимальный вариант 42 не ниже Х  – 3 S , т.е. 39,46, а максимальный вариант 67 не превышает Х=3 S, т.е. 67,64. Таким образом, выборка однородна, и изучаемые особи относятся к одному вариационному ряду. Среднее квадратическое отклонение выражается в тех же единицах, которыми измеряется признак, т.е. является поименованной величиной. 

Коэффициент изменчивости (вариации)

      Основное достоинство среднего квадратического отклонения заключается в том, что оно дает полную количественную характеристику изменчивости изучаемого показателя. Однако сравнить изменчивость двух групп с разными средними значениями изучаемого признака и, тем более, изменчивость разных признаков с помощью данного показателя нельзя. Вот здесь на помощь и приходит следующий показатель изменчивости – коэффициент изменчивости или вариации.

      Коэффициент изменчивости характеризует изменчивость в относительных величинах. Это отношение среднего квадратического отклонения к средней арифметической для данной выборки, выраженное в процентах. Коэффициент изменчивости определяется по формуле:

где Cv – коэффициент изменчивости;

    S   – среднее квадратическое отклонение;

    Хcp – средняя арифметическая.

Вычислить Cv для изучаемых Вами признаков. В нашем примере:

Коэффициент изменчивости позволяет  сравнивать степень изменчивости разных признаков. Чем коэффициент изменчивости выше, тем общая изменчивость признака тоже выше. Низкие коэффициенты изменчивости указывают на генетическую однородность популяции по данным показателям, высокие коэффициенты изменчивости свидетельствуют о ее неоднородности.

Ориентировочно  считают, что если Cv< 5% – изменчивость низкая, Cv  от 5 до 10% – средняя, Cv >10% – высокая. Максимальное значение коэффициента изменчивости обычно не превышает 30%.

Нормированное отклонение

      Нормированное отклонение – это показатель, характеризующий  отдельную варианту или группу вариант. Обозначается буквой Н.

      Нормированное отклонение – это величина, которая указывает, на сколько долей среднего квадратического отклонения каждый конкретный член совокупности отклоняется от средней арифметической. Вычисляется он по формуле:

где Н – нормированное отклонение;

      Хср – средняя арифметическая;

      S  – среднее квадратическое отклонение.

      Как и коэффициент изменчивости, нормированное  отклонение – величина относительная. Каждая варианта характеризуется определенным значением Н. Если Н  какой-либо варианты равно +1, значит эта варианта больше Х на 1. Чем больше значение  Н, тем дальше от средней арифметической отстоит данная особь.

Ошибка  статистических величин

      Для изучения изменчивости того или иного  признака берут не всех представителей, а только часть их (выборочную совокупность или выборку). В каждом конкретном  случае в выборку могут попасть особи, имеющие несколько более высокие или более низкие значения признака, поэтому вычисленные значения биометрических величин будут отражать свойства генеральной совокупности с определенными ошибками. Эти ошибки не могут быть устранены при самой тщательной организации исследований, но их можно учесть. Они получили название ошибок репрезентативности или выборочности. 
 Ошибки статистических показателей будут тем больше, чем выше изменчивость признака и чем меньше объем выборки.

Ошибки  статистических показателей обозначаются буквой m. Чтобы различать, к какому показателю относится ошибка, рядом с условным ее обознчением подстрочно приписывается обозначение данного показателя.

Например.   m– ошибка средней арифметической,

             mS  – ошибка  среднего квадратического отклонения,

          mcv – ошибка коэффициента изменчивости.

 Все ошибки измеряются в тех же единицах, что и сами показатели. Ошибки статистических показателей вычисляются по формулам:

где m – ошибка средней арифметической,

      S – среднее квадратическое отклонение,

      n   – объем выборки 

где mS  – ошибка среднего квадратического отклонения,

        S   – среднее квадратическое отклонение,

    n    – объем выборки.

где  mcv – ошибка коэффициента изменчивости,

      Сcv  – коэффициент измечивости,

      n     – объем выборки.

Ошибки  статистических показателей позволяют  уточнить границы, в которых находится  фактическое значение данных показателей. Такими границами считается интервал, равный промежутку: показатель ±2 ошибки.

В нашем  примере

2mx = ± 1,3 X = 53,5 ± 1,3 кг.

Вычислить  mср ,  mS,  mcv  для изучаемых Вами признаков.

Критерий  достоверности

и достоверность разности между средними 

 Критерий достоверности позволяет  определить, насколько велика допущенная в опыте ошибка. Его обозначают буквой t и вычисляют по формуле: 

Если  критерий достоверности больше 3 (t>3), то данные опыта достоверны, ошибка составляет около 5%. Если критерий достоверности меньше 3 (t<3),то полученным данным верить нельзя.

 Критерий достоверности зависит от размаха изменчивости и от числа наблюдений. Если t<3, то нужно увеличить выборку, взять для наблюдений больше особей, проверить, нет ли случайных значений вариант. В нашем примере

Полученное  число больше 3, значит данные достоверны.

Информация о работе Статистическое изучение модификационной изменчивости