Автор: Пользователь скрыл имя, 17 Января 2011 в 08:39, реферат
Сравнение средних значений различных выборок относится к наиболее часто применяемым методам статистического анализа. При этом всегда должен быть выяснен вопрос, можно ли объяснить имеющееся различие средних значений статистическими колебаниями или нет. В последнем случае говорят о значимом различии.
ANOVA (Дисперсионный анализ)
|
Апостериорные тесты Гомогенные подгруппы
Рост
|
Means for groups in homogeneous subsets are displayed (Показаны средние значения для групп внутри гомогенных подгрупп).
a. Uses Harmonic Mean Sample Size = 39,300 (Используется гармоническое среднее для размера выборки = 39,300).
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed. (Размеры групп неодинаковы. Используется гармоническое среднее размеров групп. Уровни ошибок типа I не гарантируются).
Выведенные результаты содержат:
В этом примере дисперсионный анализ дает максимально значимый результат (р < 0,001). Тест Дункана выделяет две гомогенные подгруппы (со стандартным значением р = 0,05), одна из которых включает возрастной класс до 55 лет, а другая — три остальных класса. Это означает, что возрастной класс до 55 лет значимо отличается от трех других возрастных классов, которые, в свою очередь, не обнаруживают значимого различия между собой.
Уменьшение роста с увеличением возраста может быть связано с тем, что в старших возрастных классах преобладают женщины, рост которых мал по сравнению с мужчинами, что и вызывает данный эффект. Повторим этот анализ для категорий пола. Окажется, что у мужчин факт уменьшения роста с увеличением возраста подтверждается, а для женщин — нет.
Далее мы подробно рассмотрим имеющиеся в диалоговом окне AN OVA кнопки Contrasts (Контрасты), Post Hoc... и Options..., а также возможности, которые они предоставляют.
13.4. Сравнение более чем двух зависимых выборок
На основе данных по гипертонии исследуем, значимо ли изменяется содержание холестерина в течение четырёх промежутков времени (такое сравнение для первых двух промежутков времени мы уже провели в параграфе 13.2).
Для достижения этой цели подходит однофакторный дисперсионный анализ с повторными измерениями. Пользователи SPSS, работавшие с этим пакетом на больших компьютерах, знают, что выполнить эту весьма распространенную операцию можно было только с помощью процедуры MANOVA (многомерный дисперсионный анализ). Ясно, что эта процедура предназначена для разнообразных методов многомерного анализа, но может быть использована при одномерном дисперсионном анализе с повторными измерениями.
Начиная с версии 7 SPSS процедура MANOVA была заменена процедурой GLM (General Linear Model). Однако и в текущей версии процедура MANOVA по прежнему остается доступной при использовании программного синтаксиса.
Разнообразные возможности анализа, предоставляемые этими процедурами (GLM и MANOVA), обеспечиваются ценой уже практически необозримого количества команд, спецификаций, параметров и ключевых слов. Даже при решении такой простой задачи, как рассматриваемая, надо уметь ориентироваться в этом многообразии. Несколько подробнее процедура GLM рассматривается в главе 17; однако в рамках этой книги невозможно охватить всю широту диапазона возможностей, предоставляемых этой процедурой. Теперь перейдем к решению нашей задачи при помощи однофакторного дисперсионного анализа с повторными измерениями.
Откроется диалоговое окно Repeated Measures Define Factors) (Определить фактор(ы) для повторных измерений).
В данном примере
мы подвергнем анализу четыре переменных:
cho10, cho11, cho16 и chol12; следовательно, фактор
повторных измерений будет
Рис. 13.6:
Диалоговое окно Repeated Measures Define Factor(s)
Рис. 13.7: Диалоговое окно Repeated Measures
Вы убедитесь,
что для неподготовленного
Tests of Within-Subjects Effects (Тест эффектов внутри субъекта)
|
Вероятность ошибки р составляет 0,048, что указывает на значимое различие между отдельными моментами времени. К сожалению, даже в 10-й версии SPSS отсутствует возможность провести апостериорный тест для повторных измерений, чтобы выяснить, какие именно промежутки времени значимо отличаются друг от друга. В случае, если выявлены значимые отличия, как в рассмотренном примере, пользователю не остается ничего другого, кроме выполнения парного t-теста.
13.5 t-тест одной выборки
Этот тест позволяет выяснить, отличается ли среднее значение, полученное на основе данной выборки, от предварительно заданного контрольного значения.
Мы проверим, отличается ли средний показатель холестерина, полученный при исследовании гипертонии, от значения 229, которое могло быть определено в каком-либо другом исследовании.
Результаты, показанные
в окне просмотра, свидетельствуют
о том, что в данном исследовании
средний исходный уровень холестерина
составляет 237,27, что значимо (р = 0,029) отличается
от контрольного значения 229.
Рис. 13.8: Диалоговое окно One-Sample T Test
One-Sample Statistics (Статистика одной выборки)
|
One-Sample Test (Тест пои одной выборке)
|
Кнопкой Options... (Параметры) можно задать вместо 95 % любой другой доверительный интервал. Значение доверительного интервала может принимать значения в промежутке от 1 до 99%.