Автор: Пользователь скрыл имя, 13 Ноября 2011 в 08:27, контрольная работа
изучение и расчёт статистических данных
Решение:
Среднюю прибыль на одну акцию определяю с помощью формулы средней арифметической взвешенной:
где х – значения признака,
f
– частоты признака.
В данном случае частотой признака является количество выпущенных акций.
Таким
образом, подставив в формулу
средней арифметической взвешенной
исходные данные, получим:
Ответ:
средняя прибыль на одну акцию, полученная
фирмами региона составляет 12.68 р.
Задача 14
Имеются следующие данные о производстве продукции предприятия за 1995-2000 гг. (в сопоставимых ценах), млн. р.:
Таблица 8 – Исходные данные
Год | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
Производство продукции, млн. р. | 78 | 85 | 92 | 88 | 97 | 102 |
Определить показатели ряда динамики (цепные и базисные) производства продукции за 1995 – 2000 гг.:
1) абсолютные приросты;
2) темпы роста;
3) темпы прироста;
4)
абсолютное значение одного
Решение:
1) Абсолютный прирост показывает увеличение или уменьшение уровня ряда за определенный период времени. Абсолютный прирост цепной – разность между последующим и предыдущим уровнем ряда, определяется по следующей формуле:
∆уц = уi – уi-1
где уi – уровень сравниваемого периода;
уi-1 – уровень предыдущего
периода.
Абсолютный прирост базисный определяется по формуле:
∆уб = уi – у0
где у0 – уровень базисного
периода.
2)
Темп роста – отношение
Трц
= уi / уi-1
Базисный темп роста определяется по формуле:
Трб
= уi / у0
3)
Темп прироста – отношение
абсолютного прироста к
Тпрц
= ∆уi
/ уi-1; Тпрб
= ∆уi
/ у0
Зная темп роста, можно определить темп прироста по следующей формуле:
Тпр
= Тр – 1, или
Тпр = Тр – 100 %
4)
Абсолютное значение одного
А1
% = ∆у / (Тпр *100)
Таблица 9 – Расчет показателей ряда динамики
Наименование показателя | Условное обозначение | Год | |||||
1995 | 1996 | 1997 | 1998 | 1999 | 2000 | ||
Абсолютные уровни | у | 78 | 85 | 92 | 88 | 97 | 102 |
Абсолютный цепной прирост | ∆уц | 0 | 7 | 7 | -4 | 9 | 5 |
Абсолютный базисный прирост | ∆уб | 0 | 7 | 14 | 10 | 19 | 24 |
Цепные темпы роста | Трц | 0 | 1.09 | 1.08 | 0.96 | 1.10 | 1.05 |
Базисные темпы роста | Трб | 0 | 1.09 | 1.18 | 1.13 | 1.24 | 1.31 |
Цепные темпы прироста | Тпрц | 0 | 0.09 | 0.08 | -0.04 | 0.10 | 0.05 |
Базисные темпы прироста | Тпрб | 0 | 0.09 | 0.18 | 0.13 | 0.24 | 0.31 |
Содержание одного % прироста | А1 % | 0 | 0.78 | 0.85 | 0.92 | 0.88 | 0.97 |
Задача 19
Имеются следующие данные о продажах товаров на одном из рынков города (таблица 10).
Таблица 10 – Исходные данные
Вид товара | Единица измерения | Продано товаров, тыс. ед. | Цена, р. | ||
Октябрь | Ноябрь | Октябрь | Ноябрь | ||
А | кг | 65 | 62 | 5.5 | 6.2 |
Б | л | 25 | 28 | 15.1 | 13.2 |
В | кг | 15 | 18 | 4.5 | 4.0 |
Определить:
Решение:
1)
Индивидуальные индексы цен
2)
Общий индекс цен находится
по формулам:
по
формуле Пааше
по
формуле Ласпейреса
3)
Индекс товарооборота находится по
формуле:
Ответ:
индивидуальный индекс цен товара А
– 113 %, товара Б – 87 %, В – 89 %; общий
индекс цен по формуле Пааше – 97.77
%, по формуле Ласпейреса – 98.82 %; индекс
товарооборота – 102.93 %.
Задача 24
В таблице 12 приведены выборочные данные по 8 предприятиям одной из отраслей Дальнего Востока.
Таблица 15 – Исходные данные
Номер предприятия | Валовая прибыль, млн. р. | Численность работающих, чел. |
1 | 52.5 | 230 |
2 | 62.3 | 350 |
3 | 45.4 | 150 |
4 | 72.1 | 420 |
5 | 85.6 | 520 |
6 | 87.1 | 570 |
7 | 98.2 | 690 |
8 | 50.0 | 200 |
Определить:
1)
зависимость и уравнение связи
валовой прибыли от размера
численности работников
2)
тесноту связи между размером
валовой прибыли и
3)
теоретическое значение валовой прибыли,
если численность работающих будет равна
610 человек.
Решение:
1)
Уравнение однофакторной
где у – теоретическое значение результативного признака;
а0, а1 – коэффициенты уравнения регрессии;
х – значение факторного признака.
Параметры
а0, а1 уравнения
примой находятся путем решения системы
нормальных уравнений, полученных методом
наименьших квадратов:
Таблица 16 – Расчет параметров уравнения регрессии
Номер предприятия | Валовая прибыль, млн. р. (у) | Численность работающих, чел. (х) | у2 | х2 | ух |
1 | 52.5 | 230 | 2756.25 | 52900 | 12075 |
2 | 62.3 | 350 | 3881.29 | 122500 | 21805 |
3 | 45.4 | 150 | 2061.16 | 22500 | 6810 |
4 | 72.1 | 420 | 5198.41 | 176400 | 30282 |
5 | 85.6 | 520 | 7327.36 | 270400 | 44512 |
6 | 87.1 | 570 | 7586.41 | 324900 | 49647 |
7 | 98.2 | 690 | 9643.24 | 476100 | 67758 |
8 | 50.0 | 200 | 2500.00 | 40000 | 10000 |
∑ | 553.2 | 3130 | 40954.12 | 1485700 | 242889 |
Подставив в уравнения системы найденные параметры, получим:
Информация о работе Контрольная работа по дисциплине «Статистика»