Вредные привычки

Автор: Пользователь скрыл имя, 05 Декабря 2011 в 23:09, реферат

Описание работы

Формирование и совершенствование различных морфо-физиологических функций и организма в целом зависят от их способности к дальнейшему развитию, что имеет во многом генетическую (врожденную) основу и особенно важно для достижения как оптимальных, так и максимальных показателей физической и умственной работоспособности. При этом следует знать, что способность к выполнению физической работы может возрастать многократно, но до определенных пределов, тогда как умственная деятельность фактически не имеет ограничений в своем развитии. Каждый организм обладает определенными резервными возможностями. С

Работа содержит 1 файл

физра.docx

— 148.65 Кб (Скачать)

   85

расходует при предельной работе больше энергии, чем нетренированный, а объясняется тем, что сама работа, произведенная тренированным, превышает величину работы, которую может выполнить нетренированный. Экономизация проявляется в несколько меньшем расходе энергии на единицу работы, однако весь объем работы у тренированного при предельной работе настолько велик, что общая величина затраченной энергии оказывается очень большой.

   Преобладание  расхода энергии у тренированных особенно заметно в тех случаях, когда выполняемая работа не отличается сложностью. Вращение педалей велоэргометра сопровождается почти одинаковым расходом энергии у мастера спорта и спортсмена третьего разряда. Между тем различия в количестве работы, которую может выполнить на велоэргометре мастер или новичок, очень велики, что и определяет различия в величинах энергетических трат.

   Весьма  тесно связаны с тренированностью спортсмена показатели максимального потребления кислорода. Чем тренированнее спортсмен, тем большее количество кислорода он в состоянии потребить во время предельной работы. Самые высокие показатели (5,5-6,5 л/мин, или 80-90 мл/кг) зарегистрированы у представителей циклических видов спорта - мастеров международного класса, находящихся в момент исследования в состоянии наилучшей спортивной формы. Несколько меньшие цифры - около 4,5-5,5 л/мин, или 70-80 мл/кг, - отмечаются у менее подготовленных мастеров спорта и некоторых перворазрядников. У спортсменов второго, третьего разряда величина максимального потребления кислорода достигает приблизительно 3,5-4,5 л/мин, или 60-70 мл/кг. Показатель ниже 3 л/мин, или 50 мл/кг, характеризует низкий уровень тренированности.

   Такая тесная связь между максимальным потреблением кислорода и тренированностью наблюдается в тех видах спорта, которые предъявляют значительные требования к снабжению мышц кислородом и характеризуются высоким уровнем  аэробных реакций. Для специализирующихся в работе максимальной мощности связь  между тренированностью и максимальным потреблением кислорода очень мала, так как для них более характерна связь между тренированностью и максимальным кислородным долгом, отражающим возможный объем анаэробных процессов в организме. У таких спортсменов (например, бегунов на короткие и средние дистанции) максимальный кислородный долг может достигать 25 л, если это спортсмены очень высокого класса. У менее тренированных спортсменов максимальный кислородный долг не превышает 10-15 л.

   Большая величина максимального потребления  кислорода у высокотренированных спортсменов тесно связана с большими величинами

   86

объема  дыхания и кровообращения. Максимальное потребление кислорода, равное 5-6 л/мин, сопровождается легочной вентиляцией, достигающей 200 л в 1 мин, при частоте дыхания, превышающей 60 в 1 мин, и глубине каждого дыхания, равной более 3 л. Иначе говоря, максимальное потребление кислорода сопровождается максимальной интенсивностью легочного дыхания, которое у высокотренированных спортсменов достигает значительно больших величин, чем у малотренированных. Соответственно этому максимальных величин достигает минутный объем крови. Для того чтобы транспортировать от легких в мышцы 5-6 л кислорода в 1 мин, сердце должно перекачивать в каждую минуту около 35 л крови. Частота сердечных сокращений при этом составляет 180-190 в 1 мин, а систолический объем крови может превышать 170 мл. Естественно, что столь резко возрастающая скорость кровотока сопровождается высоким подъемом артериального давления, достигающим 200-250 мм рт. ст.

   Если  выполняемая предельная работа характеризуется  высокой интенсивностью анаэробных реакций, то она сопровождается накоплением  продуктов анаэробного распада. Оно больше у тренированных спортсменов, чем у нетренированных. Например, концентрация молочной кислоты в крови при предельной работе может доходить у тренированных спортсменов до 250-300 мг%. Соответственно этому общие биохимические сдвиги в крови и моче у тренированных спортсменов при предельной работе значительно большие, чем у нетренированных.

   Понижение уровня сахара в крови, являющееся одним  из основных признаков утомления, наиболее выражено при очень длительной работе у хорошо тренированных спортсменов. Даже при величине содержания сахара в крови ниже 50 мг% тренированной марафонец еще долго способен сохранять высокий темп бега, в то время как нетренированный при таком низком содержании сахара в крови вынужден сойти с дистанции.

   Значительные  изменения в химизме крови  во время работы говорят о том, что центральная нервная система  тренированного организма обладает устойчивостью к действию резко  измененного состава внутренней среды. Организм высокотренированного спортсмена обладает повышенной сопротивляемостью к действию факторов утомления, иначе говоря, большой выносливостью. Он сохраняет работоспособность при таких условиях, при которых нетренированный организм вынужден прекратить работу.

   Таким образом, функциональные показатели тренированности  при выполнении предельно напряженной  работы в циклических видах двигательной деятельности обусловливаются мощностью  работы. Так,

   87

из  приведенных данных видно, что при  работе субмаксимальной и максимальной мощности наибольшее значение имеют анаэробные процессы энергообеспечения, т.е. способность адаптации организма к работе при существенно измененном составе внутренней среды в кислую сторону. При работе большой и умеренной мощности главным фактором результативности является своевременная и удовлетворяющая доставка кислорода к работающим тканям. Аэробные возможности организма при этом должны быть очень высоки.

   При предельно напряженной мышечной деятельности происходят значительные изменения практически во всех системах организма, и это говорит о  том, что выполнение этой напряженной  работы связано с вовлечением  в ее реализацию больших резервных  мощностей организма, с усилением  обмена веществ и энергии.

   Таким образом, организм человека, систематически занимающегося активной двигательной деятельностью, в состоянии совершить  более значительную по объему и интенсивности  работу, чем организм человека, не занимающегося  ею. Это обусловлено систематической  активизацией физиологических и  функциональных систем организма, вовлечением  и повышением их резервных возможностей, своего рода тренированностью процессов  их использования и пополнения. Каждая клетка, их совокупность, орган, система  органов, любая функциональная система  в результате целенаправленной систематической  упражняемости повышают показатели своих функциональных возможностей и резервных мощностей, обеспечивая в итоге более высокую работоспособность организма за счет того же эффекта упражняемости, тренированности мобилизации обменных процессов.

Даже в абсолютном покое (во сне) человеку необходима энергия  для обеспечения работы внутренних органов, поскольку любой вид  деятельности требует расхода энергии. В таблице 1.6 представлены данные о  расходе энергии в различных  видах спорта в пересчете на 1 кг массы тела человека в час. Вопреки  существующему мнению спорт и  физическая работа "сжигают" не так  много калорий, на что обратили внимание немецкие исследователи (Кремер, Тренклер, 2000). В таблице 1.7 приводится соотношение расхода энергии при работе в течение 1 ч и расхода калорий в соответствии с приемом адекватного количества пищевых продуктов (табл. 1.7).

Двигательная деятельность обеспечивается сократительной способностью мышц, которая зависит от скорости аккумуляции и расхода энергии. Между расходом и восстановлением  энергии существует динамическое равновесие, которое зависит от многих факторов и существенно различается. например у бегунов: спринтера в забеге на 60 м и стайера — на 42,195 км.

Стратегия тренера  и медико-биологическое обеспечение  при тренировке спортсменов, специализирующихся в спринтерских и стайерских дистанциях, существенно различается. Тренировка спринтера преимущественно направлена на совершенствование скорости: он тренирует свои скоростные качества, а стайер — выносливость. При  этом интенсивность образования  энергии для осуществления поставленных задач у них существенно отличается, а следовательно, разным должно быть и питание (его калорийность, соблюдение необходимого соотношения белков, углеводов и жиров, динамика поступления каждого из ингредиентов в организм и др.).

Расход энергии  в различных видах спорта

Ежедневный расход энергии в различных видах  спорта представлен в таблице 1.8.

Общая структура годичного  цикла подготовки практически во всех видах спорта включает три основных периода: подготовительный, соревновательный и переходный. В подготовительном периоде выделяют общеподготовительный и специально-подготовительный этапы, в соревновательном периоде — пред соревновательный и этап непосредственной подготовки к соревнованиям (рис. 1.11).

Общая структура тренировочных  занятий в цикле подготовки к  главным соревнованиям (Справочник IAAF)

Энерготраты в каждый из периодов существенно отличаются, что требует особого внимания к компенсации энергодающих биомакромолекул в зависимости от вида выполняемой работы (анаэробной, смешанной или аэробной). На представленной схеме не отражен период восстановления как после главных соревнований, так и во время микро-, мезо- и макроциклов. Однако на него следует обратить серьезное внимание, чтобы не вызвать эффект перетренированности. Одним из факторов, вызывающих перетренированность, является неадекватное питание.

Способы сохранения энергии  и реализации ее запасов для обеспечения  движения могут быть разделены на два типа: анаэробный и аэробный. Они различаются между собой  длительностью процесса, его интенсивностью и участием в нем кислорода.

Анаэробный алактатный (без участия лактата) путь энергообеспечения мышечной деятельности используется для короткой и интенсивной работы (спринт) — без участия кислорода, без образования молочной кислоты, за счет энергетических фосфатов.

Анаэробный лактатный путь энергообеспечения используется для средних и длинных дистанций — без участия кислорода, с образованием молочной кислоты, при окислении гликогена и глюкозы.

Смешанная зона анаэробно-аэробной производительности энергии характеризуется  участием кислорода, использованием гликогена  и свободных жирных кислот как  источника энергии.

Взаимодействие процессов  участия кислорода, источников энергии:

Анаэробные  процессы:

1)АТФ=>АДФ+ Р + свободная энергия;

2)креатинфосфат + АДФ => креатин + АТФ;

3)2 АДФ =>АТФ + АМФ.

Аэробный  процесс:

1) гликоген или глюкоза + Р + АДФ => лактат + АТФ:

гликоген, глюкоза, жирные кислоты + Р + О=> СО+ Н2O + АТФ.

АТФ является главной  биомакромолекулой, которая обеспечивает сокращение мыши по схеме

актин + миозин + АТФ + Н20 => актин + + миозин + АДФ + Фнеорг = Работа.

Недостаток АТФ  в клетке (в результате повышенного  распада или недостаточного синтеза) лимитирует спортивную работоспособность.

Накопление энергии  в клетках происходит за счет поступления  в организм энергетически ценных продуктов животного и растительного  происхождения. При этомуглеводы обеспечивают 60 %, жиры — 25 %, белки — 15 % энергии, необходимой для выполнения работы. Скорость накопления или восстановления при предварительном расходе энергии бывает различной в зависимости от функционального состояния организма, вида спорта, а также действия определенных лекарственных веществ.

Аэробное окисление  глюкозы с целью последующего синтеза АТФ происходит на первом этапе до двух молекул пировиноградной  кислоты, которая превращается в  ацетил-Ко А, окисление которого в свою очередь происходит в цикле лимонной кислоты и дыхательной цепи. При этом энергия АТФ расходуется на образование тепла и накапливается в клетках. Общий выход АТФ составляет 38 молекул. Аэробный механизм образования энергии (АТФ) из глюкозы в 18 раз более эффективен, чем анаэробный. Одним из факторов, который стимулирует поступление глюкозы в клетки мышц, является гипоксия.

Информация о работе Вредные привычки