Основы гидростатики и гидродинамики в плавании

Автор: Пользователь скрыл имя, 07 Ноября 2012 в 10:47, контрольная работа

Описание работы

Все существующие способы плавания можно разделить на две группы — правильные и неправильные.
К правильным способам плавания относятся спортивные способы кроль, брасс, баттерфляй, способ на боку и те разновидности прикладного плавания, которые построены на основе техники плавания спортивными способами. К неправильным способам можно отнести все остальные.

Содержание

1. Введение………………………………………………………………3
2. Гидростатика…………………………………….…………………………3
3. Гидродинамика…………………………………………………........7
3.1. Сопротивление вихреобразования. …………………………12
3.2. Активное сопротивление …………………………………...14
3.3. Гидродинамическая подъемная сила………………………...16
3.4. Движущие силы………….…………………………………….17
3.5. Дополнительные движу¬щие силы……………………………17
4. Заключение……………………………………………………………20

Работа содержит 1 файл

Контрольная1.doc

— 235.50 Кб (Скачать)

Удельный вес  пловцов-стайеров (0,967) меньше, чем пловцов-спринтеров (0,988) (данные Н.А. Бутовича, 1962).

Можно ли практическому  работнику определить среднюю плотность  тела пловца? Можно, если имеется специальная  «шахта» (аквариум), где по объему вытесненной жидкости легко рассчитать средний показатель плотности.

В лабораторных условиях используется метод биопсии: делается забор кусочка ткани, который в дальнейшем подвергается химическому расщеплению и анализу.

Однако наиболее прост тест на плавучесть (рис. 4). После выполнения испытуемым полного глубокого вдоха его фиксируют

 

 



 

в положении вертикальной плавучести, руки вверх. Дается качественная оценка: если кисти рук (возможно, и часть предплечий) «выглядывают» изводы, плавучесть человека положительная или относительно хорошая; при отрицательной же плавучести человек полностью скрывается под водой. Если кончики пальцев вытянутых вертикально вверх рук едва касаются поверхности воды, — плавучесть нейтральная. Практика показывает, что занимающиеся, предварительно объединенные в пары, с большим удовольствием выполняют это задание.

Исследования, проведенные на больших выборках, дают все основания сделать вывод  о том, что 85 % людей имеют положительную плавучесть.

Но, несмотря ни на что, есть один весьма принципиальный момент, заслуживающий самого пристального внимания: средняя плотность человеческого тела равна (±) единице. На вдохе она чуть меньше единицы, на выдохе — чуть больше. Если же вспомнить, что и средняя плотность воды также равна единице (±), то вывод напрашивается сам собой: утонуть в воде практически невозможно! Организм человека предрасположен к воде!

Умение находиться в воде без движения и в плавучем состоянии (еще лучше: при этом уметь беспрепятственно дышать) — крайне важно в решении проблемы непотопляемости. Именно статическое плавание дает возможность отдыха на воде, особенно в минуты психогенной напряженности. Элементарными упражнениями для овладения подобным навыком являются «поплавок», «медуза», «звезда», «стрела».

Начинать разучивать позу отдыха целесообразно в положении на спине при отсутствии волн. Чтобы обеспечить устойчивое равновесие в воде, достаточно завести прямые руки за голову. При этом центр тяжести переместится чуть ближе к голове и окажется рядом с общим центром давления. Если этого окажется недостаточно (ноги все-таки продолжают опускаться), можно высунуть из воды пальцы или кисти рук. Ноги сразу всплывут и появятся над водой.

Бывает достаточно раскинуть руки чуть в стороны  или широко развести ноги. Наконец, можно просто согнуть ноги в коленях и добиться того же эффекта равновесия.

Гидродинамика

Весь анализ движений пловца базируется на наиболее общих закономерностях гидродинамики. Он весьма сложен. Сложность прежде всего заключается в том, что движения происходят в плоскости, пограничной между двумя средами: водой и воздухом. Если к этому добавить принципиальное отличие водной среды, несовершенную с точки зрения гидродинамики форму человеческого тела, задачи становятся еще более трудными. Кроме того, при движении тело пловца постоянно меняет свое положение. Таким образом, движения пловца характеризуются целым комплексом параметров.

В этой связи  представляется целесообразным разобраться  в основных причинно-следственных связях, определяющих эффективность движений.

На движущееся тело действуют силы тяжести, силы тяги, силы гидродинамического сопротивления, подъемные силы.

Единственно неизменными  и постоянно действующими являются силы тяжести, остальные силы — переменны.

Сила, с которой  вода действует на движущееся в ней тело,

складывается  из сил трения и сил давления. Ее называют силой реакции воды. Поскольку сила — векторная величина, по правилу параллелограмма ее можно разложить на две составляющие:  горизонтальную и вертикальную, а за основу принять направленность потока воды; при этом горизонтальная составляющая есть не что иное, как сила лобового сопротивления, а вертикальная составляющая — подъемная сила (рис. 5).


 



 

 

 

 

 

 

 

Лобовое сопротивление  может быть вычислено по формуле:

где:   р  — плотность воды;

S — площадь проекции тела на плоскость, перпендикулярную направлению движения тела; v — скорость движения тела; С — коэффициент лобового сопротивления (величина безразмерная).

Величина коэффициента Сх непостоянна. Она зависит от формы и размеров тела, его ориентации относительно набегающих потоков и других факторов.

Ориентация тела в потоке характеризуется углом атаки. Угол имеет две составляющие: продольную ось тела пловца и направление его движения.

С увеличением угла атаки  коэффициент Сх непрерывно повышается и достигает максимума, когда тело принимает положение, перпендикулярное потоку воды (угол = 90°).

Данная формула в литературе (Н.А. Бутович, 1962) имеет и несколько  иной вид. Суммарная сила сопротивления  воды может быть выражена так:

где;   R — суммарная сила сопротивления воды; а — коэффициент сопротивления формы; с — коэффициент сопротивления трения; q — коэффициент волнового сопротивления; s — площадь миделева сечения погруженной в воду части

тела пловца; р — плотность воды; v — скорость продвижения пловца.

Для упрощения  этой формулы половину коэффициентов  произведения, т. е. acq/2 можно заменить одним общим коэффициентом К сопротивления среды (воды) в данных условиях (форма тела пловца, состояние поверхности тела, волнообразование в данном бассейне). Формула примет вид:

Так как плотность  воды практически равна единице, окончательно формула будет выглядеть так:

В свою очередь, положение тела во многом зависит  от скорости его движения. Впервые зависимость была изучена методом буксировки в воде (СМ. Гордон, 1968). Результатом проделанных опытов явилась кривая зависимости сопротивления от скорости, которая по форме была близка квадратичной параболе, причем картина почти совпадала при буксировке под водой и по поверхности (под водой условия те же самые, отсутствует лишь сопротивление волнообразования). Выравнивание эмпирического ряда регрессии способом наименьших квадратов привело к уравнению:

где:   R — суммарная величина сопротивления;

К — безразмерный коэффициент сопротивления; v — скорость буксировки.

В литературе можно  встретить и множество других формул, подобных этим. При их прочтении  и анализе необходимо помнить, что все они справедливы лишь для какого-то частного случая и отражают одномоментное состояние. В целом гидродинамическая ситуация гораздо сложнее и не укладывается в рамки какой-либо формулы.

Привлекает  внимание один принципиальный момент: взаимосвязь сопротивления и скорости перемещения тела. Правда, следует заметить, что квадратичная зависимость, приводимая большинством авторов, постулируется для абсолютно твердых тел, для случаев неизменного сечения Миделя. В реальности картина иная. Величина степени может быть различна: 1,5 (О.И. Логунова, А.А. Ваньков, 1971), 1,87 (И.Г. Сафарян, 1969) и т.д. Несомненно одно: есть сопротивление, оказываемое средой движущемуся телу, и есть попытка оценить это сопротивление, подвергая, в частности, его анализу и используя при этом модельные опыты.

Однако модель — это еще не естественная гидродинамическая ситуация. Последняя намного сложнее. Значит, требуются еще более подробный анализ и весьма осторожная его оценка.

Именно  поэтому в литературе существует обилие разных терминов: сопротивление трения, сопротивление вихреобразования, сопротивление волнообразования, активное сопротивление, пассивное сопротивление, сопротивление формы, лобовое сопротивление и т.д.

Для анализа  чаще всего используется классификация общего сопротивления на: сопротивление трения, сопротивление вихреобразования, сопротивление волнообразования (А.А. Ваньков, 1958; Н.А. Бутович, 1965; СМ. Гордон, 1968; Н.Ж. Булгакова, 1979; 1984; Б.Н. Никитский, 1981; Д. Каунсилмен, 1982, и др.).

Сопротивление возникает вследствие движения в вязкой жидкости.

В физике медленное  течение в стационарном потоке несжимаемой жидкости (воду можно условно принять за таковую) описано в виде известной формулы Стокса:

где:   F — сила сопротивления медленно движущемуся телу (шару); R — радиус шара;

г — динамическая вязкость жидкости; v — скорость движения тела.

Обращает на себя внимание тот факт, что сила сопротивления пропорциональна первым степеням скорости и линейным размерам тела.

Как отмечают авторы, такая зависимость справедлива и для медленно движущихся тел иной формы.

Опыты в стеклянных трубках показывают, что при относительно низких скоростях движения жидкость в своем поведении подчиняется законам ламинарного тока, то есть движение жидкости слоисто. Каждый отдельный слой перемещается со своей строго определенной скоростью. Частицы в потоке располагаются не хаотично, как это можно было бы предположить, а строго упорядочение: не перемешиваясь, оставаясь в пределах одного и того же слоя.

При движении по стеклянной трубке формируется профиль скорости (рис. 6). Непосредственно у стенки скорость течения жидкости равна 0, а в центральной части, на оси трубки — максимальная.



 

 

 

 

 

 

 

 

 

 

Если скорость  набегающего потока велика, происходит энергичное перемещение частиц в поперечном направлении. Такой беспорядочно завихренный ток называется турбулентным. Примечательно, что перемешивание частиц начинается в близлежащем, пограничном с поверхностью тела, слое и во многом определяется состоянием поверхности.

Взаимодействие между отдельными слоями жидкости, а также пограничным слоем и поверхностью тела вместе составляют сопротивление трения.

Сопротивление трения. При движении тела частицы  близлежащего слоя взаимодействуют с поверхностью (рис. 7). В результате такого взаимодействия возникает самое обычное противоречие: при набегающем потоке частицы близлежащего слоя движутся в одну сторону, а тело — в другую; либо то же самое происходит относительно неподвижных частиц, обладающих запасом потенциальной энергии. Это взаимодействие, или это противоречие, и есть не что иное, как трение.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Более того, частицы  не просто оказываются движущимися относительно тела: в результате трения они замедляют свое движение, вплоть до полной остановки. Возникает так называемый слипинг-эффект (самое обычное прилипание к поверхности).

Аналогично  поведение частиц близлежащих слоев.

В результате вокруг движущегося тела формируется своего рода водный чехол, движущийся вместе с телом и тормозящий его продвижение. При обычном скольжении человека в вытянутом положении (руки вперед) возмущение распространяется во все стороны примерно на 70 см. Можно себе представить, какой огромный объем воды пловец «тащит» за собой и какую часть своей энергии затрачивает на это.

При анализе данного вида сопротивления чаще всего рассматриваются структура «пограничного слоя» (общепринятый термин) и физические процессы, которые там происходят. Считается, что именно этими характеристиками определяется величина силы трения.

Пограничным слоем называется тонкий слой заторможенной воды, образующийся на поверхности тел.

Под «границей» понимают условную линию поверхности, на которой скорость частиц пограничного слоя тела становится равной скорости набегающего тела. На поверхности тела спортсмена толщина пограничного слоя может достигать нескольких миллиметров. Увлекаемый телом поток называют еще попутным.

Рассмотрим  характер движения частиц в пограничном  слое.

Вследствие  разности скоростей частицы приходят во вращательное движение. Вращение частиц тем интенсивнее, чем ближе частица находится к поверхности тела. Вне пограничного слоя частицы не вращаются, если поток, обтекающий тело, не завихрен. Пограничный же слой всегда завихрен.

Характер течения  в пограничном слое зависит от скорости набегающего потока v, характерного для этого тела, размера тела (длина, рост L), кинематического коэффициента вязкости А. и определяется через безразмерное число Рейнольдса (Re):

Число Рейнольдса характеризует отношение сил  инерции к силам вязкости жидкости.

При небольшой скорости набегающего потока вода в пограничном слое течет в виде отдельных слоев. Однако это не означает, что движение происходит без завихрений. Это лишь доказывает, что движение упорядоченно, слои не смешиваются, а частицы вращаются только вокруг осей, перпендикулярных плоскости потока, оставаясь всегда в пределах одного слоя. Перемешивания частиц в поперечном направлении нет. Если же

скорость набегающего  потока велика, то происходит энергичное перемешивание. Пограничный слой становится турбулентным.


Поскольку кожа пловца не содержит идеально гладких  поверхностей, а движения тела или  его отдельных частей постоянно изменяются во времени и в пространстве, характер течения воды в пограничном слое при плавании человека всегда турбулентен. Ламинарность же потока рассматривается как модель, близкая к идеальной.

Информация о работе Основы гидростатики и гидродинамики в плавании