Автор: Пользователь скрыл имя, 29 Марта 2012 в 21:42, курсовая работа
Электричество плотно вошло в нашу жизнь и мы просто не представляем себя без него. Но задумывались ли мы когда-нибудь о том, какое количество полезных ископаемых тратится на то, чтобы донести его до нас и подать именно в той форме, в которой мы привыкли его наблюдать (220 В, 50 Гц).
1. Введение •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2
2. Пример расчета силового трансформатора •••••••••••••••••• 3
3. Виды электротехнических материалов:
3.1 Проводники и изоляторы •••••••••••••••••••••••••••••••••••••••••••••• 9
а) сердечники ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11
б) обмоточные провода ••••••••••••••••••••••••••••••••••••••••••••••• 21
в) трансформаторные масла •••••••••••••••••••••••••••••••••••••••31
г) трансформаторная бумага ••••••••••••••••••••••••••••••••••••••• 41
4. Заключение (история трансформатора
Свойства изоляторов
Изолятор | Удельное сопротивление | Диэлектрическая постоянная | Напряжение пробоя | Максимальная рабочая температура |
Бакелит | 1010 | 4,4-5,4 | 11,8 | 100 |
Стекло | 1012 | 4,8 | 13,2 | 600 |
Полиэстер (пленка) | 1013 | 2,8-3,7 | 27,6 | 105 |
Полиэтилен | 1014 | 2,2 | 23 | 60 |
Полипропилен | 1014 | 2 | 23,6 | 100 |
Тефлон (фторопласт) | >2·1016 | 2,1 | 110 | 200 |
Сердечники.
Сердечники силовых трансформаторов изготавливаются из электротехнической стали.
Электротехническая нелегированная сталь с нормированными свойствами в постоянных полях используется для изготовления магнитопроводов всех видов и самых сложных форм: детали реле, сердечники, полюсные наконечники электромагнитов, элементы магнитоэлектрических, индукционных и электромагнитных приборов, экраны, телефонные мембраны, магнитопроводы двигателей переменного и постоянного тока малой и средней мощности и так далее.
Химический состав электротехнической нелегированной стали различных марок приведен в табл. 2. Магнитные свойства электротехнической нелегированной стали после отжига без доступа воздуха при температуре не выше 950 градусов Цельсия и далее после медленного охлаждения на воздухе (не более 10 часов) до 600 градусов Цельсия должны соответствовать нормам, приведенным в табл.3.
Электротехнические кремнистые стали - наиболее широко распространенный магнитомягкий материал, сочетающий высокие магнитные свойства с низкой стоимостью и удовлетворительной технологичностью. Эти стали широко применяются для изготовления двигателей и генераторов всех типов, дросселей и трансформаторов, электромеханизмов и приборов, работающих как на постоянном, так и на переменном токе различной частоты. Разнообразные технические требования, предъявляемые к электротехническим сталям, удовлетворяются путем изменения их химического состава, толщины листов или ленты и применения специальных технологических процессов изготовления и термической обработки.
Свойства электротехнической магнитной горячекатаной стали марок 1571 и 1572 с содержанием кремния около 4% должны соответствовать нормам, приведенным в табл. 4. В этой таблице представлены также свойства холоднокатаной тонколистовой стали марок 3471 и 3472 с содержанием кремния около 3%. Свойства электротехнической магнитной горячекатаной тонколистовой стали марок 1561 и 1562 с содержанием кремния до 4% должны соответствовать нормам, приведенным в табл. 5. Нормированные магнитные свойства сталей при частоте перемагничивания 50 Гц представлены в табл. 6. и табл. 7.
Для сталей всех типов нормируется коэффициент старения (процент увеличения удельных потерь в образце после старения по сравнению с исходными удельными потерями). Коэффициент старения должен быть не более 3 - 8% после нагрева в течение 120 часов при 120 - 150 °C в зависимости от типа стали. Магнитные свойства сталей с нормированием свойств при частоте перемагничивания 400 Гц представлены в табл. 8. Магнитные свойства сталей с нормированием свойств при частоте перемагничивания 3000 Гц приведены в табл. 9.
Представленные в табл. 6., табл. 7. и табл. 8. магнитные параметры измеряются либо вдоль направления прокатки (для анизотропных сталей), либо вдоль и поперек направления прокатки (для изотропных и горячекатаных сталей).
Магнитные свойства электротехнической стали на переменном токе зависят при одинаковой структуре и текстуре от толщины стального листа и частоты перемагничивания. Наилучшие магнитные свойства при частоте 50 Гц имеет стальной лист толщиной 0.25 - 0.30 мм. Выбор толщины листа определяется оптимальным соотношением требуемых магнитных свойств материала, коэффициента заполнения и трудоемкости изготовления магнитопровода. По мере автоматизации процессов изготовления магнитопроводов, улучшения плоскости листа и уменьшения толщины электроизоляции оптимальная толщина стали снижается и следует применять сталь толщиной 0.30 мм и 0.27 мм.
При частоте 400 Гц наилучшие магнитные свойства имеет стальной лист толщиной 0.12 мм, с учетом коэффициента заполнения оптимальная толщина для этой частоты - 0.15 мм; увеличение частоты до 3000 Гц уменьшает оптимальную толщину стального листа до 0.05 мм.
Существенное влияние на свойства электротехнических сталей оказывают примеси ( кремний, углерод, сера и фосфор).
Таблица 2
ХИМИЧЕСКИЙ СОСТАВ ЭЛЕКТРОТЕХНИЧЕСКОЙ НЕЛЕГИРОВАННОЙ СТАЛИ
______________________________
Материал Углерод Марганец Кремний Сера Фосфор Медь ГОСТ или ТУ
______________________________
Сталь:
электро-
техническая
нелегированная
тонколистовая 0.040 0.300 0.300 - - - ГОСТ 3836-83
сортовая 0.035 0.300 0.300 0.030 0.020 0.300 ГОСТ 11036-75
______________________________
Таблица 3
МАГНИТНЫЕ СВОЙСТВА ЭЛЕКТРОТЕХНИЧЕСКОЙ НЕЛЕГИРОВАННОЙ СТАЛИ
______________________________
Коэрцитивная сила, Относительная Магнитная индукция,Тл,
Марка А/м, максимальная магнитная не менее при напряженности
не более проницаемость, магнитного поля,
______________________________
Сортовая сталь (ГОСТ 11036 - 75)
10895 95 - 1.32 1.45 1.54
20895 95 - 1.36 1.45 1.54
11895 95 - 1.32 1.45 1.54
21895 95 - 1.32 1.45 1.54
10880 80 - 1.36 1.47 1.57
20880 80 - 1.36 1.47 1.57
11880 80 - 1.36 1.47 1.57
21880 80 - 1.36 1.47 1.57
10864 64 - 1.40 1.50 1.60
20864 64 - 1.40 1.50 1.60
11864 64 - 1.40 1.50 1.60
21864 64 - 1.40 1.50 1.60
Тонколистовая сталь (ГОСТ 3836 - 83)
10895 95 3000 - - -
20895 95 3000 - - -
11895 95 3000 - - -
21895 95 3000 - - -
10880 80 4000 - - -
20880 80 4000 - - -
11880 80 4000 - - -
21880 80 4000 - - -
10864 64 4500 1.38 1.50 1.62
20864 64 4500 1.38 1.50 1.62
11864 64 4500 1.38 1.50 1.62
21864 64 4500 1.38 1.50 1.62
10848 48 4800 - - -
20848 48 4800 - - -
11848 48 4800 - - -
21848 48 4800 - - -
10832 32 5000 - - -
20832 32 5000 - - -
11832 32 5000 - - -
21832 32 5000 - - -
______________________________
Таблица 4
МАГНИТНАЯ ИНДУКЦИЯ СТАЛИ В СРЕДНИХ ПОЛЯХ
______________________________
Толщина Магнитная индукция, Тл, не менее, при напряженности
Марка листа, магнитного поля, А/м, равной
мм 5 10 20 50 70 100 200 500
______________________________
1571 0.35 - 0.035 0.14 0.48 0.61 0.77 0.92 1.21
0.20 - 0.030 0.10 0.38 0.58 0.66 0.90 1.18
1572 0.35 - 0.045 0.17 0.57 0.71 0.87 1.02 1.25
0.20 - 0.040 0.14 0.48 0.62 0.74 0.92 1.20
3471 0.50 0.14 - - - - - - -
0.35 0.17 - - - - 1.61 - -
3472 0.50 0.16 - - - - 1.61 - -
0.35 0.19 - - - - 1.61 - -
______________________________
Таблица 5
МАГНИТНАЯ ИНДУКЦИЯ СТАЛИ В СЛАБЫХ ПОЛЯХ
______________________________
Толщина Магнитная индукция, мкТл, не менее, при напряженности
Марка листа, магнитного поля, А/м, равной
мм 0,2 0,4 0,8
______________________________
1561 0.35 100 220 650
0.20 100 220 650
1562 0.35 120 280 760
0.20 120 300 750
______________________________
Таблица 6
УДЕЛЬНЫЕ ПОТЕРИ СТАЛИ В СИЛЬНЫХ ПОЛЯХ ПРИ ЧАСТОТЕ 50 Гц
______________________________
Толщина Удельные потери, Вт/к, не более,
Марка листа или при индукции, Тл, равной
ленты, мм 1.0 1.5 1.7
______________________________
Горячекатаная сталь
(ГОСТ 21427.3-75)
1211 1.00 5.80 13.4 -
0.50 3.30 7.7 -
1311 0.50 2.50 6.1 -
1411 0.50 2.00 4.4 -
0.35 1.60 3.6 -
1511 0.50 1.55 3.5 -
0.35 1.35 3.0 -
Холоднокатаная
изотропная сталь
(ГОСТ 21427.2-83)
2011 0.65 3.80 9.0 -
0.50 3.50 8.0 -
2111 0.65 4.30 10.0 -
0.50 3.50 8.0 -
2211 0.65 3.00 7.0 -