Автор: Пользователь скрыл имя, 24 Февраля 2013 в 11:18, курсовая работа
Электричество плотно вошло в нашу жизнь и мы просто не представляем себя без него. Но задумывались ли мы когда-нибудь о том, какое количество полезных ископаемых тратится на то, чтобы донести его до нас и подать именно в той форме, в которой мы привыкли его наблюдать (220 В, 50 Гц).
Для того, чтобы это произошло, “электричество” должно пройти через множество силовых трансформаторов, о которых и пойдет речь в моем реферате.
Введение ·············································································· 2
Пример расчета силового трансформатора ·················· 3
Виды электротехнических материалов:
3.1 Проводники и изоляторы ·············································· 9
а) сердечники ································································· 11
б) обмоточные провода ··············································· 21
в) трансформаторные масла ·······································31
г) трансформаторная бумага ······································· 41
Заключение (история трансформатора) ······················· 44
Литература ·········································································· 51
План.
стр.
3.1 Проводники
и изоляторы ··················
а) сердечники
······························
б) обмоточные
провода ······················
в) трансформаторные
масла ························
г) трансформаторная бумага ······························
Введение.
Электричество плотно вошло в нашу жизнь и мы просто не представляем себя без него. Но задумывались ли мы когда-нибудь о том, какое количество полезных ископаемых тратится на то, чтобы донести его до нас и подать именно в той форме, в которой мы привыкли его наблюдать (220 В, 50 Гц).
Для того, чтобы это произошло, “электричество” должно пройти через множество силовых трансформаторов, о которых и пойдет речь в моем реферате.
Пример расчета силового трансформатора.
Назначение
Силовой трансформатор предназначен для преобразования одного переменного напряжения, например напряжения сети, в другое переменное напряжение той же частоты.
Переменный ток получают непосредственно с вторичных обмоток силового трансформатора. Постоянный ток получают от выполненного по одной из схем выпрямителя, на который подается переменное напряжение с вторичной обмотки силового трансформатора.
Кроме того, силовой трансформатор
отделяет цепи устройства от сети переменного
тока, что позволяет заземлять
его шасси непосредственно. В
случае использования бестрансформатор
Устройство трансформатора
Трансформатор состоит из сердечника, набранного из пластин трансформаторной стали толщиной 0,35 - 0,5 мм встык без зазора, и каркаса с обмотками.
Сердечники бывают броневые из Ш-образных пластин (обмотки располагаются на среднем стержне - керне) и стержневые из П-образных пластин (обмотки располагаются или на одном, или на двух стержнях поровну). В последнее время стали применяться сердечники, изготовленные из плоской ленты - ленточные или витые сердечники.
Обозначение сердечника состоит из буквы Ш или П, показывающей форму пластин, и двух чисел, обозначающих ширину керна а и толщину набора с в мм, например, Ш20Х40. Если ширина крайних стержней пластины больше половины ширины среднего стержня, в начале обозначения ставят букву У. Если сердечник витой, после буквы П или Ш стоит буква Л - ленточный. Неразрезные витые сердечники, имеющие форму кольца, обозначают буквами ОЛ и тремя числами, показывающими наружный диаметр, внутренний диаметр и высоту кольца.
Отдельные пластины или слои ленты сердечников для уменьшения потерь на вихревые токи изолируются друг от друга слоем окалины, лака, клея или тонкой бумаги. В трансформаторах малой мощности это делать не обязательно.
Расчет трансформатора
Размеры сердечника силового трансформатора определяются в зависимости от габаритной (кажущейся) мощности трансформатора. Обмотки рассчитываются на соответствующие напряжения и токи, вычисленные при расчете выпрямителя.
Принятые обозначения
a – ширина стержня, на котором расположены обмотки, см.
b – ширина окна пластины, см.
c – толщина набора пластин, см.
h – высота окна, см.
Qc – площадь поперечного сечения сердечника, (а · с)см2
Qo – площадь окна (b · h), см2
Pг – габаритная мощность трансформатора
Ui – напряжение или ЭДС обмотки (i = 1, 2, 3, …), В
Ii – ток обмотки, мА
Wi – число витков обмотки
Di – диаметр провода обмотки, мм
σ – плотность тока в обмотках А/мм2
η – коэффициент полезного действия трансформатора
Габаритная мощность трансформатора Pг является суммой мощностей Pгi, вычисленных для каждой вторичной обмотки.
Мощность Pгi для одной о6мотки определяется по формуле
если вся обмотка работает в течение каждой половины периода (например, обмотка, питающая выпрямитель, собранный по мостовой схеме или двухполупериодной схеме удвоения напряжения, а также обмотка накала ламп переменным током), или по формуле:
если обмотка или часть ее работает в течение лишь одной половины каждого периода (например, обмотка, от которой питается выпрямитель, собранный по однополупериодной схеме или двухполупериодной схеме со средней точкой).
По суммарной габаритной мощности выбирают сердечник, для которого выполняется соотношение
Отношение размеров c/a должно находиться в пределах 1 - 2.
Значения КПД трансформатора и
плотности тока
в обмотках в зависимости от мощности
Мощность |
КПД |
Плотность |
10 - 20 |
60 |
4 |
20 - 40 |
65 |
3.5 |
40 - 75 |
70 |
3 |
75 - 100 |
75 |
2.5 |
Если обмотки выполняются
После выбора сердечника приступают к расчету обмоток трансформатора.
Количество витков первичной обмотки определяют по формуле
вторичных обмоток по формуле:
Диаметр провода определяется по заданной плотности тока, значения которой зависят от мощности трансформатора, по формуле
В заключение проверяют, уложатся ли все обмотки в окна выбранного сердечника. Площадь, занимаемая каждой обмоткой с прокладками в окне сердечника, приближенно определяется по формуле
где β коэффициент заполнения окна сердечника медью провода, равный 0.3 - 0.35 для проводов ПЭЛ, ПЭТ и ПЭВ, 0.18 - 0.25 для проводов ПВО, ПЭБО и ПЭШО.
Конструктивное исполнение
Чтобы обеспечить возможность включения трансформатора в сеть с напряжением как 127 в, так и 220 в, первичная обмотка выполняется на 220 в с отводом на 127 в, при этом переключение на нужное напряжение можно осуществлять или переключателем, или предохранителем, переставляемым из одной пары зажимов в другую. При другом способе переключения первичная обмотка выполняется в виде двух отдельных обмоток, имеющих секции на 110 и 17 в. При напряжении сети 127 в обе обмотки включаются параллельно, при 220 в секции на 110 в включаются последовательно, при 110 в - параллельно. Переключение производят при помощи ламповой панельки и фишки, изготовленной из цоколя лампы.
Обычно первой наматывается на каркас первичная обмотка. Затем вторичные в порядке уменьшения диаметра провода. Иногда с целью уменьшения помех, проникающих из сети, между первичной (сетевой) и вторичными обмотками укладывают экран, представляющий собой незамкнутый виток фольги или один слой тонкого провода. Вывод экрана соединяют с шасси, второй вывод обмотки-экрана не используется.
Готовую катушку с обмотками силового трансформатора полезно пропитать расплавленным парафином, воском, стеарином. Для уменьшения создаваемых силовым трансформатором наводок на цепи устройства катушку трансформатора поверх сердечника закрывают широкой полосой листовой меди. образующей короткозамкнутый виток вокруг трансформатора (не вокруг обмотки).
Проводники и изоляторы
В металлах электрический ток представляет собой упорядоченное движение свободных электронов. Материалы, в которых много свободных электронов, легко пропускают их направленный поток и называются проводниками. Материалы, в которых мало или совсем нет свободных электронов, называются изоляторами. Примерами хороших проводников являются такие металлы, как медь, алюминий, золото и серебро. Различные пластмассы и керамические материалы представляют собой хорошие изоляторы.
Свойства металлических проводников
Металл |
Удельное сопротивление |
Температурный
коэффициент сопротивления |
Теплопроводность |
Температура плавления |
Алюминий |
2,7·10-8 |
4·10-3 |
0,48 |
660 |
Латунь |
7,2·10-8 |
2·10-3 |
0,26 |
920 |
Константан |
4,9·10-7 |
1·10-5 |
0,054 |
1210 |
Медь |
1,6·10-8 |
4,3·10-3 |
0,918 |
1083 |
Золото |
2,3·10-8 |
3,4·10-3 |
0,705 |
1063 |
Железо |
9,1·10-8 |
6·10-3 |
0,18 |
1535 |
Свинец |
2·10-7 |
4,2·10-3 |
0,083 |
327 |
Нихром |
1·10-6 |
1,7·10-4 |
0,035 |
1350 |
Никель |
1·10-7 |
4,7·10-3 |
0,142 |
1452 |
Серебро |
1,5·10-8 |
4·10-3 |
1,006 |
960,5 |
Олово |
1,3·10-7 |
4,2·10-3 |
0,155 |
231,9 |
Вольфрам |
5,4·10-8 |
4,5·10-3 |
0,476 |
3370 |
Свойства изоляторов
Изолятор |
Удельное сопротивление |
Диэлектрическая
постоянная |
Напряжение
пробоя |
Максимальная
рабочая температура |
Бакелит |
1010 |
4,4-5,4 |
11,8 |
100 |
Стекло |
1012 |
4,8 |
13,2 |
600 |
Полиэстер (пленка) |
1013 |
2,8-3,7 |
27,6 |
105 |
Полиэтилен |
1014 |
2,2 |
23 |
60 |
Полипропилен |
1014 |
2 |
23,6 |
100 |
Тефлон (фторопласт) |
>2·1016 |
2,1 |
110 |
200 |
Сердечники.
Сердечники силовых
Электротехническая нелегирован
Химический состав электротехнической нелегированной стали различных марок приведен в табл. 2. Магнитные свойства электротехнической нелегированной стали после отжига без доступа воздуха при температуре не выше 950 градусов Цельсия и далее после медленного охлаждения на воздухе (не более 10 часов) до 600 градусов Цельсия должны соответствовать нормам, приведенным в табл.3.
Электротехнические кремнистые стали - наиболее широко распространенный магнитомягкий материал, сочетающий высокие магнитные свойства с низкой стоимостью и удовлетворительной технологичностью. Эти стали широко применяются для изготовления двигателей и генераторов всех типов, дросселей и трансформаторов, электромеханизмов и приборов, работающих как на постоянном, так и на переменном токе различной частоты. Разнообразные технические требования, предъявляемые к электротехническим сталям, удовлетворяются путем изменения их химического состава, толщины листов или ленты и применения специальных технологических процессов изготовления и термической обработки.