Автор: Пользователь скрыл имя, 12 Декабря 2012 в 20:49, лекция
Учебные вопросы:
Общие сведения о радиолокации;
Принципы радиолокационного обнаружения целей;
Методы измерения координат и скорости движения целей;
Основные тактико-технические данные радиолокационных станций (РЛС);
Типы бортовых РЛС, их назначение и краткая характеристика.
Тема: Основы радиолокации
Учебные вопросы:
Литература:
Вопрос 1.
Радиолокация – область радиоэлектроники, занимающаяся применением радиоволн для обнаружения, определения координат и измерения параметров движения различных объектов. Все объекты наблюдения в радиолокации называются целями. К ним относятся, например, корабли, самолёты, танки и др. Операции, выполняемые в радиолокации для обнаружения целей, измерения их координат и параметров движения, называются радиолокационным наблюдением.
Радиолокация как наука основана на использовании ряда физических законов, связанных с распространением и рассеянием электромагнитных волн (ЭМВ). Важнейшим для радиолокации свойством электромагнитных волн является их рассеяние при падении на объекты. Это позволяет, принимая рассеянные объектом волны и измеряя их параметры, судить о наличии и свойствах объекта. В общем случае объект рассеивает волны во все стороны, в том числе и в сторону, обратную направлению прихода падающей волны. Таким образом, облучая объект, можно принимать отражённую волну в том же месте, откуда распространяется волна облучения.
Закон о прямолинейности
распространения электромагнитн
Постоянство
скорости распространения
Важным свойством электромагнит
Электромагнитные волны, рассеянные движущимся объектом, имеют другую длину волны по сравнению с волной облучения (доплеровское смещение частоты). Этот эффект позволяет выделять движущиеся объекты и определять их скорость путём измерения величины смещения частоты.
Часто к радиолокации относят также два других направления науки и техники, связанные с излучением и приёмом радиоволн, приходящих от объектов.
Первое направление – радиометрия, или теплорадиолокация, использует для изучения объектов их собственное излучение как нагретого тела в радиодиапазоне частот, которое принимается и анализируется широкополосным приёмником. Иногда этот метод называют пассивной радиолокацией.
Второе направление – радиолокация с активным ответом. Характерным примером этого направления является система государственного опознавания, в которой объект оснащён активным ответчиком, излучающим электромагнитную волну в ответ на запросную (облучающую) волну радиолокатора.
Задачи радиолокационных наблюдений решаются радиолокационными устройствами. Совокупность функционально связанных радиолокационных устройств, предназначенных для решения какой-либо боевой задачи (обеспечение перехвата воздушных целей, прицеливание при действии по наземным целям и т.п.), называется радиолокационной системой. Техническая реализация радиолокационной системы в виде совокупности блоков или узлов обычно называется радиолокационной станцией (РЛС). РЛС функционирует в рамках более широкого понятия – радиолокационного канала. Рассмотрим более подробно его структуру и составные части.
Структура радиолокационного канала. Она включает в себя собственно РЛС (3), носитель РЛС (6), среду распространения радиоволн (2), группу объектов (1), систему навигации (4) и систему индикации и управления каналом (5) (рис. 1.1). Все эти элементы структуры участвуют в процессе обнаружения и определения характеристик заданных объектов.
1. Группа объектов состоит из заданных объектов (целей), вспомогательных объектов (ориентиров), сопутствующих объектов (фона), объектов излучающих или переизлучающих помеховые сигналы (источников помех).
Цели – заданные объекты, т.е. объекты нашего интереса, могут иметь различную физическую природу: воздушные цели (самолёты, ракеты, облака, дождь, турбулентности атмосферы и т.п.), наземные цели (скопление войск и отдельные виды техники, взлётные полосы аэродромов и сельскохозяйственные угодья, инженерные сооружения и дороги и т.п.), морские цели (корабли, ледовые поля, морская поверхность).
Ориентиры – вспомогательные объекты, которые помогают решать основную задачу обнаружения и определения характеристик целей. Так, например, ориентир – объект с известными координатами – используется для высокоточного определения координат целей, расположенных вблизи от этого объекта.
Фон – сопутствующие объекты, которые обычно препятствуют обнаружению целей. Так, если малоразмерная цель наблюдается на фоне подстилающей (земной) поверхности, то фон маскирует цель. Сигнал от фона намного превышает сигнал от цели, что требует особой системы обработки сигналов для подавления сигнала фона и выделения сигнала цели.
Рисунок 1.1. Структура радиолокационного канала.
Активные и пассивные источники помех являются объектами, которые излучают или переизлучают сигналы, мешающие обнаружению сигналов цели. Помехи обычно используются в процессе радиоэлектронной борьбы, однако они могут быть и непреднамеренными (естественными), например в виде излучения других радиопередающих устройств. Пассивные помехи создаются специальными отражателями (облака диполей, аэрозолей и других образований), отражения от которых маскируют сигналы целей.
2. Среда распространения радиоволн – пространство между РЛС и объектом. Обычно считается, что электромагнитная волна от объекта до РЛС распространяется прямолинейно и с постоянной скоростью. Наличие неоднородности среды (коэффициента преломления) вносит ошибки в процесс измерения характеристик цели, а потери энергии вследствие поглощения в среде приводят к уменьшению дальности обнаружения целей. Поэтому при решении радиолокационных задач требуется учитывать характеристики среды распространения.
3. РЛС – включает в себя собственно аппаратуру РЛС («железо») и программное обеспечение (ПО) работы РЛС. Аппаратура РЛС включает в себя следующие основные блоки:
антенные и приёмо-передающие модули. Антенно-фидерные устройства модулей обеспечивают направленное излучение и приём радиоволн с учётом их поляризации. Передающие модули обеспечивают усиление, амплитудную и фазовую модуляцию радиочастотных колебаний. Приёмные модули обеспечивают малошумящее усиление и преобразование частоты принимаемых радиочастотных колебаний;
синтезатор сигналов, который генерирует колебания заданной радиочастоты, частот модуляции и преобразования для приёмопередающих модулей;
процессор обработки сигналов, выполняющий с помощью аналоговых и цифровых устройств заданный алгоритм обработки принимаемых колебаний (синтезирования апертуры);
БЦВМ управления и обработки данных, обеспечивающая согласование работы и режимов всех устройств РЛС и носителя РЛС в соответствии с решаемой задачей, а также обработку данных с выхода сигнального процессора.
Кроме перечисленных составных частей РЛС, в неё также входят устройства технической диагностики, источники питания, сеть распределения сигналов и коммутационные устройства (на рисунке не показаны).
4. Система навигации
снабжает необходимой
5. Система индикации и управления обеспечивает связь между оператором и РЛС с использованием устройств отображения информации интеллектуальных систем управления, реализуемых с помощью ЭВМ.
6. Носитель РЛС выполняет
не только транспортные
Функционирование
В соответствии с заданным режимом работы синтезатор сигналов вырабатывает высокочастотные колебания несущей частоты зондирующего сигнала, а также частоты преобразования и модуляции сигналов.
Излучённая электромагнитная волна, пройдя среду распространения от РЛС до объекта, формирует поле облучения объекта. В зависимости от свойств объекта и параметров поля облучения, характеризуемых функцией отражения объекта, формируется рассеянная объектом ЭМВ, распространяющаяся в сторону РЛС.
Отражённая от объекта ЭМВ, пройдя среду распространения от объекта до РЛС, возбуждает поле на апертуре приёмных антенных модулей.
Процессор обработки сигналов и БЦВМ выполняют заданные алгоритмы синтезирования апертуры, обнаружения, определения координат и распознавания цели, обеспечения помехозащищённости и другие алгоритмы. Полученные данные используются оператором и подаются в другие системы (разведка, оружие, оборона и т.п.).
Дополнительные каналы (обычно другой физической природы) обеспечивают необходимой информацией процессоры обработки и БЦВМ управления. Это, прежде всего, система навигации, которая совместно с носителем обеспечивает требуемую траекторию перемещения антенных модулей РЛС, исходя из необходимости решения заданной тактической задачи. Так, при использовании РЛС в качестве информационной системы для наведения носителя РЛС на малоразмерную наземную цель управление траекторией предусматривает получение высокой разрешающей способности и выдерживание заданного вектора путевой скорости относительно объекта.
Вопрос 2.
Объектом радиолокационного наблюдения, или целью может быть любое тело или группа тел с электрическими или магнитными свойствами, отличными от свойств среды, в которой распространяются радиоволны; целью может быть также и тело, характеризующееся собственным излучением радиоволн.
Обнаружение целей состоит в фиксации поступающих на вход приёмного устройства РЛС радиолокационных сигналов. Наличие такого сигнала свидетельствует о существовании цели, а при его отсутствии следует полагать, что цели нет.
Измерение координат обнаруженных целей основано на определении значений параметров радиолокационных сигналов, несущих информацию об этих целях. При этом используются следующие физические свойства радиоволн:
Постоянство скорости и
прямолинейность
и, следовательно,
(2.1)
Таким образом, для определения дальности цели при использовании метода активной радиолокации необходимо измерить время распространения радиоволн между РЛС и целью в обе стороны; обычно величину tD называют временем запаздывания отражённого сигнала.
Определение угловых
координат (пеленгация) целей основывается
на прямолинейности
Вопрос 3.
Измерениям подлежат дальность, угловые координаты и скорость.
Методы измерения дальности
Определение дальности целей основано на измерении времени запаздывания tD радиолокационных сигналов. Классификация методов измерения дальности связана с параметрами сигнала, которые играют основную роль при измерении времени запаздывания. В соответствии с этим метод измерения может быть амплитудным, частотным или фазовым.
Амплитудный метод.
При амплитудном методе измерения определяется время запаздывания характерного изменения амплитуды принимаемого радиолокационного сигнала. Из различных видов модуляции излучаемых колебаний наиболее употребительной является импульсная (рис. 3.1 и 3.2а).