Технологии искусственного интеллекта

Автор: Пользователь скрыл имя, 07 Ноября 2011 в 13:41, реферат

Описание работы

Современная экономика немыслима без информации. Тысячи предприятий, миллионы налогоплательщиков, триллионы рублей, биржевые котировки, реестры акционеров - все эти информационные потоки необходимо оценить, обработать, сделать необходимые выводы, принять правильное решение.
Современный специалист - экономист должен уметь принимать обоснованные решения. Для этого наряду с традиционными знаниями, такими как основы менеджмента, основы внешнеэкономической деятельности, банковское дело, административное управление, налогообложение он должен владеть информацией по построению информационных систем.

Содержание

Введение 4
1.Понятие искусственного интеллекта 7
2.Структура и методы интеллектуальной системы 12
3.Перспективы развития искусственного интеллекта 26
Заключение 32
Приложение 1 34
Список литературы 36

Работа содержит 1 файл

реферат .doc

— 162.00 Кб (Скачать)

     Нейросетевые  алгоритмы успешно применяются для решения сложных практических задач. Конечно, искусственный интеллект делает основной упор на решение задач, обладающих одной или несколькими следующими особенностями:

  • алгоритм решения неизвестен или не может быть использован из-за ограниченности ресурсов компьютера,
  • задача не может быть определена в числовой форме,
  • цели задачи не могут быть выражены в терминах точно определенной целевой функции-критерия.

     Однако, поскольку "знания - это формализованная информация, которую используют в процессе логического вывода", то можно сказать, что нейросеть берёт факты (фактические знания о мире) и в процессе обучения формирует правила - знания, описывающие алгоритм решения данной задачи. Эти правила принятия решения можно затем извлечь из нейронной сети и записать в одном из традиционных для классических экспертных систем формализмов представления знаний (например, в виде набора продукционных правил логического вывода). Но можно просто пользоваться исходным нейросетевым представлением алгоритма принятия решения, если содержательная интерпретация его менее важна по сравнению с возможностью получения способа решения задачи.

     Возможность быстрого обучения и дообучения нейросетевых экспертных систем позволяет им отражать особенности быстро меняющегося внешнего мира и оперировать актуальным знанием, тогда как традиционный путь формализации знаний людей-экспертов более длителен и трудозатратен.

3.Перспективы  развития искусственного  интеллекта

     В современном мире рост производительности программиста практически происходит только в тех случаях, когда часть интеллектуальной нагрузки берут на себя компьютеры. Одним из способов достигнуть максимального прогресса в этой области является "искусственный интеллект" (ИИ), когда компьютер не только берет на себя однотипные, многократно повторяющиеся операции, но и сам может обучаться. Кроме того, создание полноценного "искусственного интеллекта" открывает перед человечеством новые горизонты развития.

     Целью изучения этих вопросов является подготовка специалистов в области автоматизации сложноформализуемых задач, которые до сих пор считаются прерогативой человека. Данная дисциплина необходима для приобретения знаний о способах мышления человека, а также о методах их реализации на компьютере. Из сказанного выше вытекает основная философская проблема в области ИИ — возможность или невозможность моделирования мышления человека. В случае, если когда-либо будет получен отрицательный ответ на этот вопрос, все остальные вопросы курса не будут иметь ни малейшего смысла.

     Следовательно, начиная исследование ИИ, заранее  предполагается положительный ответ. В  приведены несколько соображений, которые подводят к данному ответу.

  1. Первое доказательство является схоластическим и говорит о непротиворечии ИИ и Библии. Даже люди, далекие от религии, знают слова священного писания: "И создал Господь человека по образу и подобию своему…". Исходя из этих слов, можно заключить, что поскольку Господь, во-первых, создал нас, а во-вторых, мы по своей сути подобны ему, то мы вполне можем создать кого-то по образу и подобию человека.
  2. Создание нового разума биологическим путем — для человека дело вполне привычное. Наблюдая за детьми, мы видим, что большую часть знаний они приобретают путем обучения, а не получают как заложенную в них заранее. Данное утверждение на современном уровне не доказано, но по внешним признакам все выглядит именно так.
  3. То, что раньше казалось вершиной человеческого творчества — игра в шахматы, шашки, распознавание зрительных и звуковых образов, синтез новых технических решений, — на практике оказалось не таким уж сложным делом (сейчас работа ведется не на уровне возможности или невозможности реализации перечисленного, а всего лишь на уровне нахождения оптимального алгоритма). Теперь зачастую данные проблемы даже не относят к проблемам ИИ. Есть надежда, что и полное моделирование мышления человека окажется не таким уж сложным делом.
  4. С проблемой воспроизведения своего мышления тесно смыкается проблема возможности самовоспроизведения.

      Способность к самовоспроизведению долгое время считалась прерогативой живых организмов. Однако некоторые явления, происходящие в неживой природе (например, рост кристаллов, синтез сложных молекул копированием), очень похожи на самовоспроизведение. В начале 1950-х годов Дж. фон Нейман занялся основательным изучением самовоспроизведения и заложил основы математической теории "самовоспроизводящихся автоматов". Он же теоретически доказал возможность их создания.

      Есть  также различные неформальные доказательства возможности самовоспроизведения, но для программистов самым ярким доказательством, пожалуй, является существование компьютерных вирусов.

  1. Принципиальная возможность автоматизации решения интеллектуальных задач с помощью ЭВМ обеспечивается свойством алгоритмической универсальности. Что же это за свойство?

      Независимо  от того, в какой форме и какими средствами предписание будет первоначально  выражено, его можно будет задать также в виде машинной программы.

     Однако  не следует думать, что вычислительные машины и роботы могут в принципе решать любые задачи. Алгоритмическая универсальность ЭВМ означает, что на них можно программно реализовывать (т. е. представить в виде машинной программы) любые алгоритмы преобразования информации — будь то вычислительные алгоритмы, алгоритмы управления, поиска доказательства теорем или композиции мелодий. При этом имеют в виду, что процессы, порождаемые этими алгоритмами, являются потенциально осуществимыми, т. е. что они осуществимы в результате конечного числа элементарных операций. Практическая осуществимость алгоритмов зависит от имеющихся в нашем распоряжении средств, которые могут меняться с развитием техники. Так, в связи с появлением быстродействующих ЭВМ стали практически осуществимыми и такие алгоритмы, которые ранее были осуществимыми только потенциально.

     Однако  свойство алгоритмической универсальности  не ограничивается констатацией того, что для всех известных алгоритмов оказывается возможной их программная  реализация на ЭВМ. Анализ разнообразных  задач привел математиков к замечательному открытию. Было строго доказано существование таких типов задач, для которых невозможен единый эффективный алгоритм, решающий все задачи данного типа; в этом смысле невозможно решение задач такого типа и с помощью вычислительных машин. Этот факт способствует лучшему пониманию того, что могут делать машины и чего они не могут сделать. В самом деле, утверждение об алгоритмической неразрешимости некоторого класса задач является не просто признанием того, что такой алгоритм нам не известен и никем еще не найден. Такое утверждение представляет собой одновременно и прогноз на все будущие времена о том, что подобного рода алгоритм нам неизвестен и никем не будет указан или, иными словами, что он не существует.

     Как же действует человек при решении  таких задач? Похоже, что он просто игнорирует их, что, однако, не мешает ему жить дальше. Другим путем является сужение условий универсальности задачи, когда она решается только для определенного подмножества начальных условий. И еще один путь заключается в том, что человек методом "научного тыка" расширяет множество доступных для себя элементарных операций (например, создает новые материалы, открывает новые месторождения или типы ядерных реакций).

     Следующим философским вопросом ИИ является цель создания. Допустим, что человек  сумел создать интеллект, превышающий свой собственный (пусть не качеством, так количеством). Что теперь будет с человечеством? Какую роль будет играть человек? Для чего он теперь нужен? Нужно ли в принципе создание ИИ?

     Приемлемым  ответом на эти вопросы является концепция "усилителя интеллекта" (УИ). Уже сейчас созданы и неживые УИ — например, люди не могли бы предсказать погоду без компьютеров, а при полетах космических кораблей с самого начала применялись бортовые счетно-решающие устройства. Кроме того, человек уже давно использует усилители силы (УС) — понятие, во многом аналогичное УИ. В качестве усилителей силы ему служат автомобили, краны, электродвигатели, прессы, пушки, самолеты и многое другое.4

Заключение

     Появление компьютерной обработки данных привело  к выдвижению информации на первое место в современном мире. Нет ни одного человека или организации, способных обойтись без информации, которая позволяет не просто принять решение, но и выжить в современных условиях. Усложнение информации, ее структурное изменение, да и увеличение ее объемов во много раз, порождают новые требования к ее обработке, увеличение оперативность ее циркуляции и, как следствие, скорости принимаемых на ее основе решений.

     Перечисленные достижения привели к созданию новых  информационных технологий, наиболее перспективным из которых является создание искусственного интеллекта, разработка которого началась еще в 60-х годах XX века и представляет собой попытку создать, путем моделирования процесса работы мозга человека, средство решения сложных задач более простыми методами.

        Экспертные системы не смогли бы получить столь широкого распространения в настоящее время, если бы в свое время в их развитие не внесли существенный вклад идеи искусственного интеллекта. То, что предлагает искусственный интеллект, - это множество концепций, технологий и архитектур, пригодных для решения комплексных проблем в тех случаях, когда чисто арифметические или математические решения либо неизвестны, либо малоэффективны.

       В настоящее время уже общим  местом стало утверждение, что по определению предметом интереса области искусственного интеллекта являются те информационные проблемы, которые не могут быть решены с помощью традиционных технологий. Я думаю, что так оно останется и в обозримом будущем.

Приложение 1

     Решение задачи 

     Исходные  данные: 

     Число заболеваний      300      133      100      200      120      270      120      260
     Доход      180      200      330      180      310      180      310      200
     Вычислить коэффициент корреляции и провести анализ зависимости числа  заболеваний  от дохода
 

     Решение: 

     1.Ввод  функции: Сервис – Анализ данных – Корреляция – ОК. 

            Доход      число заболеваний
     Доход      1       
     число заболеваний      -0,809487411      1
 

     Вывод: так как коэффициент корреляции r = - 0,8 не близок к 0  => существует  линейная зависимость между числом заболеваний и доходом, связь сильная. 
 

Список литературы

      1.Луценко,  Е.В. Интеллектуальные информационные  системы/ Е.В. Луценко, Краснодар:  КубГАУ, 2006. – 615 с. 

      2. Потапов  А.С.  Технологии  искусственного  интеллекта – СПб:  СПбГУ ИТМО, 2010. – 218 с

      3. Грабауров, В.А. Информационные технологии для менеджеров/В.А. Грабауров. - М.: Изд-во «Финансы и статистика», 2001. – 368 с.

Информация о работе Технологии искусственного интеллекта