Автор: Пользователь скрыл имя, 12 Апреля 2013 в 10:34, курсовая работа
Задача о коммивояжере состоит в том, чтобы объехать заданные города по одному разу в таком порядке, чтобы пройденное расстояние было минимальным.
Такая задача актуальна во многих областях, таких как автомобильные, судовые и железнодорожные перевозки, расчет авиационных линий, конвейерное производство.
Введение3
Постановка задачи4
Метод решения5
Язык программирования7
Описание алгоритма8
Описание основных структур данных12
Описание интерфейса с пользователем14
Заключение16
Литература17
Текст программы18
Аннотация
Задача о коммивояжере состоит в том, чтобы объехать заданные города по одному разу в таком порядке, чтобы пройденное расстояние было минимальным.
Такая задача актуальна во
многих областях, таких как автомобильные,
судовые и железнодорожные
Оглавление
Задача состоит в том, чтобы коммивояжер (торговец) обошел все намеченные города единожды и в таком порядке, чтобы его путь был наименьшим.
Эта задача заинтересовала меня потому, что её решение интересно с точки зрения программирования и составления алгоритма. Важно нахождение такого алгоритма, который позволит наиболее оптимально решить задачу.
Сейчас решение
данной задачи необходимо во многих областях
связанных с замкнутыми и при
этом жестко связанными по времени
системами, такими как: конвейерное
производство, многооперационные
Поэтому данная проблема на современном этапе развития общества имеет не самое последнее по значимости место.
Имеется N городов, которые должен обойти коммивояжер с минимальными затратами. При этом на его маршрут накладывается два ограничения:
Для расчета затрат существует матрица условий, содержащая затраты на переход из каждого города в каждый, при этом считается, что можно перейти из любого города в любой, кроме того же самого (в матрице диагональ заполнена нулями). Целью решения является нахождения маршрута, удовлетворяющего всем условиям и при этом имеющего минимальную сумму затрат.
Для начала следует
сказать, что в основе любого метода решения
данной задачи лежит полный перебор всевозможных
вариантов путей. [2]
Мы проходимся по каждому маршруту: одни
отбрасываем, другие сравниваем с минимальным
путем. В конце перебора мы получаем кратчайший
путь.
Особенностью этой задачи является то, что с увеличением количества городов растет общее число различных комбинаций прохождения пути. А вместе с тем растет и время расчета результата. Поэтому главным решением оптимизации алгоритма можно свести к тому, чтобы во время вычислений отбрасывать заведомо не минимальные пути. Необходимо задать такой критерий, который отсекал бы лишние ветви в дереве поиска кратчайшего пути.
Для пояснения моего варианта решения задачи следует ввести несколько понятий. Промежуточную длину пути можно определить следующим образом: представим, что торговец выбрал какой-либо путь; он вышел из первого города и сейчас находится в каком-то городе i. Тогда все пройденное расстояние из начала в город i будем называть промежуточная длина пути. Если исходить из того, что торговец в каждый момент времени будет находиться в каком-то i-ом городе, то всегда можно подсчитать какое расстояние он прошел из начала до этого города, то есть промежуточную длину пути.
Минимальным путем будем называть маршрут, проходящий по всем городам и имеющий минимальную длину.
Мой критерий строится на одном простом утверждении: если промежуточная длина пути больше минимального пути, тогда очевидно следующее:
следовательно такой маршрут можно отбросить.
Пояснения показаны на рисунке 1.
В данной программе используется следующий критерий: при переходе от одного города к другому рассчитывается промежуточная длина пути, и если она больше текущего минимального пути, то вычисления по данной ветви прекращаются. Таким образом, отсекаются лишние ветви.
Решение данной задачи приводит к перебору возможных вариантов пути, но критерии такого рода могут значительно сократить вычисление и уменьшить время работы программы.
Для написания программы был выбран язык Си++ по следующим причинам:
В программе содержится рекурсивная функция, которая обеспечивает перебор возможных путей для поиска самого короткого. Именно здесь заключен алгоритм решения задачи «коммивояжера». Рассмотрим его подробнее:
Следует рассмотреть
один из основных моментов алгоритма,
связанных с перебором
Из приведенного примера уже можно выделить, как алгоритм перебирает пути. Он действует по следующей схеме:
Теперь рассмотрим структуру приложения, опишем классы и процедуры, которые были изменены и наполнены кодом.
Программа состоит из 4 классов:
Класс CKurs_LipinDlg. В начале при вызове функции OnInitDialog() переменные заполняются начальными данными. Затем из файла «table.ini» считывается таблица расстояний между городами. И теперь диалоговое окно готово к работе с пользователем. Функция OnPaint() выводит на экран карту, позволяет выделять города, выбранные пользователем, а также соединяет города линиями-путями, когда задача решена. Кроме того, обеспечивается вывод информации для пользователя: пояснения, длина минимального пути и список расстояний между городами, составляющие минимальный путь.
При нажатии левой кнопкой мыши
вызывается функция
OnLButtonDown(). Она
определяет по какому городу щелкнул пользователь
и ставит/снимает выделение с него. Также
здесь осуществляется проверка на количество
выделенных городов, т.к. время ожидания
решения задачи для количества более 13
городов станет не удовлетворительным
(от 1,5 минут и более). Поэтому программа
выдаст сообщение, если мы попытаемся
выйти за допустимые пределы.
Кнопка «Выбрать стандартные города» выделяет города, которые требуется соединить в условии задачи, а именно Москва, Ярославль, Нижний Новгород, Самара, Саратов, Волгоград, Воронеж, Пенза, Липецк, Тамбов, Орел, Курск, Тула. Кнопка «Очистить» снимает выделение со всех городов и задает начальные значения ряду необходимых переменных.
Функция OnButton3() связана с кнопкой «Задать пункт отправления». После нажатия кнопки пользователь может щелчком мыши выбрать пункт отправления коммивояжера. Кнопка «Параметры» вызывает диалоговое окно «Параметры», где пользователь может редактировать таблицу расстояний между городами. Функция OnOK() обрабатывает нажатие кнопки «Рассчитать путь». Она подготавливает начальные значения для вызова рекурсивной функции: создается таблица расстояний только для выделенных городов, заполняется первоначальный минимальный путь, выводится поясняющая информация. Затем вызывается функция recursiv(), которая перебирает варианты маршрутов, отсекает лишние ветви путей и находит минимальный.
Класс CSetting.
Функция OnInitDialog() программным путем создает и выводит поля ввода, имитируя таблицу расстояний между городами. Затем считывается файл «table.ini», и заполняются поля ввода полученными значениями. Вызывается функция Proverka(), которая сканирует полученные данные на ошибки, т.е. определяет введены ли только цифры, и если нет, тогда удаляет все лишние символы.
По нажатию кнопки «Сохранить» программа передает данные в родительское окно, записывает данные из полей ввода в файл и закрывает диалоговое окно.
При загрузке приложения появляется основное диалоговое окно. Здесь пользователь может выбрать несколько городов и рассчитать для них минимальный путь.
Чтобы отменить выделение городов нужно щелкнуть по кнопке «Очистить». Нажав кнопку «Рассчитать путь», мы получим результат: города соединены минимальным путем, его длина дана в окне информации, в списке показаны расстояния между городами, входящими в полученный путь. Кнопка «Выбрать стандартные города» выделяет города, требуемые в задании.
Чтобы выделить пункт отправления коммивояжера нужно выбрать «Задать пункт отправления».
Кнопка «Параметры» вызывает диалоговое окно для ввода расстояний между городами (рис. 5). Это окно является модальным и его особенностью является то, что нет возможности перехода к родительскому окну.
Здесь пользователь может отредактировать расстояния между городами. Для этого нужно щелкнуть в поле ввода, и ввести другое значение. Перемещаться по этой «таблице» можно по строкам при помощи клавиш Tab или Shift+Tab.
По завершении ввода нужно нажать кнопку «Сохранить», чтобы программа записала измененные данные в файл. При этом автоматически проверится правильность введенный информации и все ошибки будут исправлены.
Кнопка «Отмена» позволяет не сохранять введенные изменения, если пользователь ошибся во введенной информации.
По нажатии любой из кнопок диалоговое окно «Параметры» закрывается и мы возвращаемся к главному окну .
Если в строке заголовка главного окна щелкнуть правой кнопкой мыши и выбрать пункт «О программе», то появится диалоговое окно, содержащее сведения о программе и об авторе (рис. 6). Нажав кнопку «OK» возвращаемся к главному окну.
Заключение
Был разработан алгоритм, позволяющий быстро найти кратчайший путь между городами. По алгоритму разработано приложение, решающее задачу о коммивояжере.
Литература