Автор: Пользователь скрыл имя, 12 Мая 2012 в 20:49, курсовая работа
Пользователи локальных вычислительных сетей (ЛВС) получают доступ к сетевому ресурсу файл-сервера с рабочих станций. Работа в многопользовательской системе требует выполнения определенных правил. В первую очередь это касается организации защиты пользовательских каталогов и файлов в сети, которая представляет собой систему коллективного доступа к некоторому разделяемому ресурсу (жесткий магнитный диск, принтер и плоттер).
Введение 4
Понятие Локальной вычислительной сети 5
Назначение и классификация компьютерных сетей 6
Распределенная обработка данных 6
Обобщенная структура компьютерной сети 8
Классификация вычислительных сетей 10
Характеристика процесса передачи данных 12
Аппаратная реализация передачи данных 15
Способы передачи цифровой информации 15
Характеристика коммуникационной сети 19
Звенья даннях 21
Управление звеньями данных 21
Основные формы взаимодействия абонентских ЭВМ 23
Заключение 25
Список использованной литературы
Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целесообразные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. Локальные вычислительные сети могут входить как компоненты в состав региональной сети, региональные сети - объединяться в составе глобальной сети и, наконец, глобальные сети могут также образовывать сложные структуры.
Рисунок
иерархии компьютерных сетей.
Пример: Компьютерная сеть Internet является наиболее популярней глобальной сетью. В ее состав входит множество свободно соединенных сетей. Внутри каждой сети, входящей в lnternet, существуют конкретная структура связи и определенная дисциплина управления. Внутри Iпtеrnеt структура и методы соединений между различными сетями для конкретного пользователя не имеют никакого значения.
Персональные компьютеры, ставшие в настоящее время непременным элементом любой системы управления, привели к буму в области создания локальных вычислительных сетей. Это, в свою очередь, вызвало необходимость в разработке новых информационных технологий.
Практика применения персональных компьютеров в различных отраслях науки, техники и производства показала, что наибольшую эффективность от внедрения вычислительной техники обеспечивают не отдельные автономные ПК, а локальные вычислительные сети.
3. Характеристика
процесса передачи
данных
Любая коммуникационная сеть должна включать следующие основные компоненты: передатчик, сообщение, средства передачи, приемник.
Передатчик - устройство, являющееся источником данных.
Приемник - устройство, принимающее данные.
Приемником могут быть компьютер, терминал или какое-либо цифровое устройство.
Сообщение - цифровые данные определенного формата, предназначенные для передачи.
Это может быть файл базы данных, таблица, ответ на запрос, текст или изображение.
Средства передачи - физическая передающая среда и специальная аппаратура, обеспечивающая передачу сообщений.
Для передачи сообщений в вычислительных сетях используются различные типы каналов связи. Наиболее распространены выделенные телефонные каналы и специальные каналы для передачи цифровой информации. Применяются также радиоканалы и каналы спутниковой связи.
Особняком в этом отношении стоят ЛБС, где в качестве передающей среды используются витая пара ПРОБОДОВ, коаксиальный кабель и оптоволоконный кабель.
Для характеристики процесса обмена сообщениями в вычислительной сети по каналам связи используются следующие понятия: режим передачи, код передачи, тип синхронизации.
Существуют три режима передачи: симплексный, полудуплексный и дуплексный.
Симплексный
режим - передача данных только в одном
направлении.
Примером симплексного режима передачи является система, в которой информация, собираемая с помощью датчиков, передается для обработки на ЭВМ. В вычислительных сетях симплексная передача практически не используется.
Полудуплексный
режим - попеременная передача информации,
когда источник и приемник последовательно
меняются местами.
Яркий пример работы в полудуплексном режиме - разведчик, передающий в Центр информацию, а затем принимающий инструкции из Центра.
Дуплексный
режим - одновременные передача и
прием сообщений.
Дуплексный режим является наиболее скоростным режимом работы и позволяет эффективно использовать вычислительные возможности быстродействующих ЭВМ в сочетании с высокой скоростью передачи данных по каналам связи. Пример дуплексного режима - телефонный разговор.
Процессы передачи или приема информации в вычислительных сетях могут быть привязаны к определенным временным отметкам, Т.е. один из процессов может начаться только после того, как получит полностью данные от другого процесса. Такие процессы называются синхронными.
В
то же время существуют процессы, в
которых нет такой привязки и
они могут выполняться
Синхронизация данных - согласование различных процессов во времени. В системах передачи данных используются два способа передачи данных: синхронный и асинхронный.
При синхронной передаче информация передается блоками, которые обрамляются специальными управляющими символами. В состав блока включаются также специальные синхросимволы, обеспечивающие контроль состояния физической передающей среды, и символы, позволяющие обнаруживать ошибки при обмене информацией. В конце блока данных при синхронной передаче в канал связи выдается контрольная последовательность, сформированная по специальному алгоритму. По этому же алгоритму формируется контрольная последовательность при приеме информации из канала связи. Если обе последовательности совпадают - ошибок нет. Блок данных принят. Если же последовательности не совпадают - ошибка. Передача повторяется до положительного результата проверки. Если повторные передачи не дают положительного результата, то фиксируется состояние аварии.
Синхронная передача - высокоскоростная и почти безошибочная. Она используется для обмена сообщениями между ЭВМ в вычислительных сетях. Синхронная передача требует дорогостоящего оборудования.
При асинхронной передаче данные передаются в канал связи как последовательность битов, из которой при приеме необходимо выделить байты для последующей их обработки. для этого каждый байт ограничивается стартовым и стоповым битами, которые и позволяют про извести выделение их из потока передачи. Иногда в линиях связи с низкой надежностью используется несколько таких битов. Дополнительные стартовые и стоповые биты несколько снижают эффективную скорость передачи данных и соответственно пропускную способность канала связи. В то же время асинхронная передача не требует дорогостоящего оборудования и отвечает требованиям организации диалога в вычислительной сети при взаимодействии персональных ЭВМ.
4. Аппаратная реализация
передачи данных
4.1
Способы передачи
цифровой информации
Цифровые данные по проводнику передаются путем смены текущего напряжения: нет напряжения - "0", есть напряжение - "1". Существуют два способа передачи информации по физической передающей среде: цифровой и аналоговый.
При цифровом или узкополостном способе передачи данные передаются в их естественном виде на единой частоте. Узкополосный способ позволяет передавать только цифровую информацию, обеспечивает в каждый данный момент времени возможность использования передающей среды только двумя пользователями и допускает нормальную работу только на ограниченном расстоянии (длина линии связи не более 1000м). В то же время узкополосный способ передачи обеспечивает высокую скорость обмена данными - до 10 Мбит/с и позволяет создавать легко конфигурируемые вычислительные сети. Подавляющее число локальных вычислительных сетей использует узкополосную передачу.
Аналоговый способ передачи цифровых данных обеспечивает широкополосную передачу за счет использования в одном канале сигналов различных несущих частот.
При аналоговом способе передачи происходит управление параметрами сигнала несущей частоты для передачи по каналу связи цифровых данных.
Передать цифровые данные по аналоговому каналу можно, управляя одним из параметров сигнала несущей частоты: амплитудой, частотой или фазой. Так как необходимо передавать данные в двоичном виде (последовательность единиц и нулей), то можно предложить следующие способы управления (модуляции): амплитудный, частотный, фазовый.
Проще всего понять принцип амплитудной модуляции: "0" - отсутствие сигнала, т.е. отсутствие колебаний несущей частоты; "1" - наличие сигнала, т.е. наличие колебаний несущей частоты. Есть колебания - единица, нет колебаний - нуль.
Частотная
модуляция предусматривает
Наиболее сложной для понимания является фазовая модуляция. Суть ее в том, что при переходе от 0 к 1 и от 1 к 0 меняется фаза колебаний, т.е. их направление.
В сетях высокого уровня иерархии - глобальных и региональных используется также и широкополосная передача, которая предусматривает работу для каждого абонента на своей частоте в пределах одного канала. Это обеспечивает взаимодействие большого количества абонентов при высокой скорости передачи данных.
Широкополосная
передача позволяет совмещать в
одном канале передачу цифровых данных,
изображения и звука, что является
необходимым требованием
Пример. Типичным аналоговым каналом является телефонный канал. Когда абонент снимает трубку, то слышит равномерный звуковой сигнал - это и есть сигнал несущей частоты. Так как он лежит в диапазоне звуковых частот, то его называют тональным сигналом. Для передачи по телефонному каналу речи необходимо управлять сигналом несущей частоты - модулировать его. Воспринимаемые микрофоном звуки преобразуются в электрические сигналы, а те, в свою очередь, и модулируют сигнал несущей частоты. При передаче цифровой информации управление производят информационные байты - последовательность единиц и нулей.
Чтобы
обеспечить передачу информации из ЭВМ
в коммуникационную среду, необходимо
согласовать сигналы
Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерамu или сетевыми адаптерами. Один адаптер обеспечивает сопряжение с ЭВМ одного канала связи.
Кроме
одноканальных адаптеров
Мультиплексор передачи данных - устройство сопряжения ЭВМ с несколькими каналами связи.
Мультиплексоры передачи данных использовались в системах телеобработки данных - первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появлении сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.
Как уже говорилось ранее, для передачи цифровой информации по каналу связи необходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из канала связи в ЭВМ выполнить обратное действие - преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Такие преобразования выполняет специальное устройство – модем.
Модем - устройство, выполняющее модуляцию и демодуляцию информационных сигналов при передаче их из ЭВМ в канал связи и при приеме в ЭВМ из канала связи.
Наиболее
дорогим компонентом
Концентратор - устройство, коммутирующее несколько каналов связи на один путем частотного разделения.
В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства - повторители.
Повторитель - устройство, обеспечивающее сохранение формы и амплитуды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.
Существуют
локальные повторители
Информация о работе Методы и средства обработки информации в глобальных компьютерных сетях