Квантовые компьютеры

Автор: Пользователь скрыл имя, 06 Сентября 2011 в 05:41, реферат

Описание работы

Квантовое аппаратное обеспечение, с другой стороны, остаётся отсталой областью, но совершённая на данный день работа предполагает, что это лишь вопрос времени, прежде чем мы построим достаточно большие устройства для тестирования алгоритма Шора и других квантовых алгоритмов. В связи с этим, квантовые компьютеры предстанут в качестве превосходных вычислительных устройств, и возможно однажды сделают современные компьютеры устаревшими. Квантовые вычисления имеет корни в узко специализированных областях теоретической физики, но их будущее без сомнений лежит в огромном эффекте, которые они окажут на жизнь всего человечества

Содержание

ВВЕДЕНИЕ 2
1. ИСТОРИЯ ВОЗНИКНОВЕНИЯ КВАНТОВОГО КОМПЬЮТЕРА 4
2. ТИПЫ КВАНТОВЫХ КОМПЬЮТЕРОВ 5
3. МАТЕМАТИЧЕСКИЕ ОСНОВЫ ФУНКЦИОНИРОВАНИЯ КВАНТОВЫХ КОМПЬЮТЕРОВ 6
4. ЗАДАЧИ, РЕАЛИЗУЕМЫЕ НА КВАНТОВЫХ ВЫЧИСЛЕНИЯХ 8
5. ПРОБЛЕМЫ СОЗДАНИЯ КВАНТОВЫХ КОМПЬЮТЕРОВ 10
6. ФИЗИЧЕСКИЕ ОСНОВЫ ОРГАНИЗАЦИИ КВАНТОВЫХ КОМПЬЮТЕРОВ 12
7. ОБЛАСТЬ ПРИМЕНЕНИЯ КВАНТОВЫХ КОМПЬЮТЕРОВ 16
ЗАКЛЮЧЕНИЕ 18
ЛИТЕРАТУРА 19

Работа содержит 1 файл

Квантовый компьютер наукоград (Сибагс, 60150).doc

— 127.00 Кб (Скачать)

      Вероятность возникает в процессе измерения. А пока система живет, для нас  существенно, что там есть сам  этот вектор.

      Другими словами, существенно, что система  «находится одновременно во всех возможных  состояниях». Как пишут многие авторы популярных введений в KB, возникает совершенно чудовищный параллелизм вычислении: к примеру, в случае нашей системы из двух кубитов мы как бы оперируем одновременно со всеми возможными ее состояниями: 00, 01, 11, 10.

      Чтобы интерпретировать ответ, надо заранее  условиться, что какой-то бит - допустим, первый - это бит ответа. Пусть алгоритм проработал, у нас получился какой-то вектор, не обязательно базисный. Тогда мы можем сказать, что первый бит с некоторой вероятностью равен 1. И требование к алгоритму такое: если ответ «да», то вероятность того, что первый бит равен 1, должна быть больше двух третей. А если ответ «нет», вероятность того, что будет ноль, должна быть тоже больше двух третей.

4. ЗАДАЧИ, РЕАЛИЗУЕМЫЕ  НА КВАНТОВЫХ ВЫЧИСЛЕНИЯХ

 

      Известно  два примера нетривиальных задач, в которых KВ дают радикальный выигрыш.

      Первый  из них - задача разложения целых чисел  на простые множители и, как следствие, вычисления дискретного логарифма (ДЛ). Дальше речь пойдет именно о ДЛ.

      Пусть у нас есть поле вычетов по модулю простого числа. В нем есть первообразные корни - такие вычеты, чьи степени порождают все ненулевые элементы. Если задан такой корень и задана степень, то возвести в степень можно быстро (например, сначала возводим в квадрат, потом получаем четвертую степень, и т. д.) Дискретный логарифм - это обратная задача. Дан первообразный корень и какой-то элемент поля; найти, в какую степень нужно возвести этот корень, чтобы получить данный элемент. Вот эта задача уже считается сложной. Настолько сложной, что ряд современных криптографических систем основан на том предположении, что вычислить ДЛ за приемлемое время невозможно, если модуль - достаточно большое простое число.

      Так вот, для дискретного логарифма  есть эффективный квантовый алгоритм. Его придумал Шор в конце 1994 года. После его статьи и начался взрыв публикаций по КВ. Независимо от него, Алексей Китаев из ИТФ им. Ландау построил квантовый алгоритм для этой и некоторых более общих задач. Идеи у них были разные.

      Шор использовал примерно такую идею, он рассмотрел базис в фазовом пространстве. Он состоит из классических состояний. Но в линейном пространстве много базисов. Мы можем найти некий оператор, который эффективно строит другой базис; мы можем перейти к нему, сделать там какие-то вычисления, вернуться обратно и получить нечто совершенно отличное от того, что мы имели бы в классическом базисе. Одна из возможностей использовать квантовость состоит в том, что мы строим какой-то странный базис, в нем что-то делаем, возвращаемся обратно и интерпретируем результат. Шор именно эту идею и реализовал. Причем преобразование оказалось такое, которое и в физике, и в математике имеет принципиальное значение - дискретное преобразование Фурье.

      Его можно представить в виде тензорного произведения операторов, которые действуют на каждый из кубитов такой матрицей:

      

      Китаев  придумал примерно следующее. Есть некоторая  ячейка - основной регистр, где мы записываем наши данные нулями и единицами. И  еще есть один управляющий кубит. Мы работаем так: у нас реализована процедура умножения на первообразный корень, на квадрат первообразного корня, и т. д. Управляющий кубит переводим в некоторое смешанное состояние, дальше строим такой оператор, который, в зависимости оттого, нуль или единица в этом управляющем кубите, либо применяет умножение к нашему основному регистру, либо не применяет. А потом кубит опять возвращаем в смешанное состояние. Оказывается, что это эффективный способ проделать некоторое измерение. То есть Китаев заметил, что одна из вещей, которые мы можем эффективно делать на квантовом компьютере, - это имитировать процесс квантового измерения. В данной задаче из результатов этих измерений эффективно извлекается ответ.

      Сам процесс вычислений, происходит так: мы все время умножаем одну и ту же ячейку на некие константы, результаты измерений записываем, а потом производим своего рода обработку результатов эксперимента - уже чисто классическими вычислениями. Вся квантовая часть заключается в том, что где-то рядом с нашим регистром находится в некоем смешанном состоянии коррелированный с ним кубит, и мы его периодически наблюдаем.

      Для вычисления ДЛ числа, записанного N битами, нужно потратить N 3 единиц времени. Вполне реализуемо - на КК, естественно. Но здесь надо заметить, что никто пока не доказал, что не существует столь же быстрого алгоритма для вычисления ДЛ на обычной машине.

      Вторая  задача предложена Гровером (L. Grover). Рассмотрим базу данных, содержащую 2N записей. Мы хотим найти ровно одну запись. Имеется некая процедура определения того, нужную запись мы взяли или нет. Записи не упорядочены. С какой скоростью мы можем решить эту задачу на обычном компьютере? В худшем случае нам придется перебрать все 2N записей - это очевидно. Оказывается, что на КК достаточно числа запросов порядка корня из числа записей – 2N/2.

      Интересная  задача - создание оптимальных микросхем. Пусть есть функция, которую нужно  реализовать микросхемой, и эта  функция задана программой, использующей полиномиально ограниченную память. Построение нужной микросхемы с минимальным  числом функциональных элементов - задача PSPACE. Поэтому появление устройств, эффективно решающих PSPACE-задачи, позволило бы единообразно проектировать оптимальные по своим показателям вычислительные устройства обычного типа. Кроме того, в PSPACE попадает большинство задач «искусственного интеллекта»: машинное обучение, распознавание образов и т.д.

      Так вот, точно установлено, что KB находятся  где-то между обычными вероятностными вычислениями и PSPACE. Если все же окажется, что KB можно эффективно реализовать  на классических вероятностных машинах, не будет смысла в физической реализации квантовых машин. Если же выяснится, что при помощи KB можно эффективно решать те или иные PSPACE-задачи, то физическая реализация КК откроет принципиально новые возможности.[6]

      Есть  еще одна область применения КК, где заведомо возможен радикальный выигрыш у существующих технологий. Это моделирование самих квантовых систем.

      Давайте посмотрим на такой вопрос: как  можно эволюцию квантовой системы  изучать на обычном компьютере? Это  постоянно делается, так как это задача важна  для химии, молекулярной биологии, физики и т.п. Но, за счет экспоненциального роста размерности при тензорном произведении, для моделирования десяти спинов вам нужно оперировать с тысячемерным пространством, сто спинов - это уже конец. А если вспомнить, что в молекуле белка десятки тысяч атомов, то... Там, правда, не всюду существенно именно квантовое моделирование, но в целом ясно, что есть очень серьезные препятствия для моделирования квантовых систем на классических компьютерах. Так что если создать вычислительное устройство, которое ведет себя квантовым образом, то по крайней мере один важный класс задач на нем есть смысл решать - можно моделировать реальные квантовые системы, возникающие в физике, химии, биологии.[7]

5. ПРОБЛЕМЫ СОЗДАНИЯ  КВАНТОВЫХ КОМПЬЮТЕРОВ

 

      Когда начался бум вокруг квантовых  вычислений, физики высказывались об этом более чем скептически. Модель квантовых вычислений не противоречит законам природы, но это еще не значит, что ее можно реализовать. К примеру, можно вспомнить создание атомного оружия и управляемый термояд.

      А если говорить о КК, надо отметить одну очень серьезную проблему. Дело в том, что любая физическая реализация будет приближенной. Во-первых, мы не сможем сделать прибор, который будет давать нам произвольный вектор фазового пространства. Во-вторых, работа любого устройства подвержена всяческим случайным ошибкам. А уж в квантовой системе - пролетит какой-нибудь фотон, провзаимодействует с одним из спинов, и все поменяется. Поэтому сразу возник вопрос, можно ли, хотя бы в принципе, организовать вычисления на ненадежных квантовых элементах, чтобы результат получался со сколь угодно большой достоверностью. Такая задача для обычных компьютеров решается просто - например, за счет введения дополнительных битов.

      В случае КК эта проблема гораздо глубже. То место, где возникает новое  качество KB по сравнению с обычными вычислениями, - это как раз сцепленные состояния - линейные комбинации базисных векторов фазового пространства. У вас есть биты, но они не сами по себе живут в каких-то состояниях - это был бы просто вероятностный компьютер (компьютер, дающий тот или иной ответ с определенной вероятностью), - а они находятся в некоем смешанном состоянии, причем согласованно-смешанном. Из-за этого в КК нельзя, например, просто взять и скопировать один бит в другой! Обычная интуиция из теории алгоритмов здесь неприменима.

      Так что проблема надежности довольно сложна, даже на уровне чистой теории. Те люди, которые активно занимаются KB, активно ее решали и добились успеха: доказано, что, как и в классике, можно делать вычисления на элементах с заданной надежностью сколь угодно точно. Это реализовано с помощью некоего аналога кодов, исправляющих ошибки.

      Что касается технической стороны, появляются сообщения, что создаются реальные квантовые системы с небольшим  числом битов - с двумя, скажем.

      Так что эксперименты есть, но пока очень  далекие от реальности. Два бита - это и для классического и для квантового компьютера слишком мало! Чтобы моделировать молекулу белка, нужно порядка ста тысяч кубитов. Для ДЛ, чтобы вскрывать шифры, достаточно примерно тысячи кубитов.

      Задача  эта возникла слишком недавно, и не исключено, что она потребует каких-то фундаментальных исследований в самой физике. Поэтому в обозримом будущем ожидать появления квантовых компьютеров не приходится.

      Но  можно ожидать распространения  через не очень долгое время квантовых  криптографических систем. Квантовая криптография позволяет обмениваться сообщениями так, что враг, если попытается подслушать, сможет разве что разрушить ваше сообщение. То есть оно не дойдет до адресата, но перехватить его в принципе будет нельзя. Подобные системы, которые уже реализованы, используют световод. Универсальный КК здесь не нужен. Нужно специализированное квантовое устройство, способное выполнять только небольшой набор операций, - своего рода квантовый кодек.

      Физической  системе, реализующей квантовый  компьютер, можно предъявить пять требований:

  1. Система должна состоять из точно известного числа частиц.
  2. Должна быть возможность привести систему в точно известное начальное состояние.
  3. Степень изоляции от внешней среды должна быть очень высока.
  4. Надо уметь менять состояние системы согласно заданной последовательности унитарных преобразований ее фазового пространства.
  5. Необходимо иметь возможность выполнять «сильные измерения» состояния системы (то есть такие, которые переводят ее в одно из чистых состояний).

      Из  этих пяти задач наиболее трудными считаются третья и четвертая. От того, насколько точно они решаются, зависит точность выполнения операций. Пятая задача тоже весьма неприятна, так как измерить состояние отдельной частицы нелегко.[5]

6. ФИЗИЧЕСКИЕ ОСНОВЫ  ОРГАНИЗАЦИИ КВАНТОВЫХ КОМПЬЮТЕРОВ

 

      Итак, что же это за тайное оружие такое - КК? Остроумная идея заключается в  использовании для хранения, передачи и обработки информации существенно  квантовых свойств вещества. В  основном такие свойства проявляют  объекты микромира: элементарные частицы, атомы, молекулы и небольшие сгустки молекул, так называемые кластеры. (Хотя, конечно, и в жизни макромира квантовая механика играет важную роль. В частности, только с ее помощью можно объяснить такое явление, как ферромагнетизм.) Одним из квантовых свойств вещества является то, что некоторые величины при измерении (наблюдении) могут принимать значения лишь из заранее определенного дискретного набора. Такой величиной, например, является проекция собственного момента импульса, или, иначе говоря, спина элементарной частицы, на любую заданную ось. Например, у электрона возможно только два значения проекции: +1/2 или –1/2. Таким образом, количество информации, необходимое для сообщения о проекции, равно одному биту. Записав в классическую однобитную ячейку памяти определенное значение, мы именно его оттуда и прочтем, если не произойдет какой-нибудь ошибки.

      Классической  ячейкой может послужить и  спин электрона. Однако квантовая механика позволяет записать в проекции спина  больше информации, чем в классике.

      Для описания поведения квантовых систем было введено понятие волновой функции. Существуют волновые функции, называемые собственными для какой-то конкретной измеряемой величины. В состоянии, описываемом  собственной функцией, значение этой величины может быть точно предсказано до ее измерения. Именно с такими состояниями работает обычная память. Квантовая же система может находиться и в состоянии с волновой функцией, равной линейной комбинации собственных функции, соответствующих каждому из возможных значений (назовем здесь такие состояния сложными). В сложном состоянии результат измерения величины не может быть предсказан заранее. Заранее известно только, с какой вероятностью мы получим то или иное значение. В отличие от обычного компьютера, в квантовом для представления данных используются такие ячейки памяти, которые могут находиться в сложном состоянии. В нашем примере мы определили бы, что спин электрона с определенной вероятностью смотрит вверх и вниз, то есть можно сказать, что в кубит записаны сразу и 0, и 1. Количество информации, содержащееся в такой ячейке, и саму ячейку называют квантовым битом, или, сокращенно, кубитом. Согласитесь, ячейки в сложных состояниях весьма необычны для классической теории информации. Каждому возможному значению величины, представленной кубитом, соответствует вероятность, с которой это значение может быть получено при чтении. Эта вероятность равна квадрату модуля коэффициента, с которым собственная функция этого значения входит в линейную комбинацию. Именно вероятность и является информацией, записанной в кубит.

Информация о работе Квантовые компьютеры