Автор: Пользователь скрыл имя, 19 Апреля 2013 в 19:01, реферат
Актуальність роботи полягає потужності математичного апарату обґрунтування структури виробництва в передплановому періоді. Вона дає змогу насамперед визначити статус ресурсів та інтервали стійкості двоїстих оцінок відносно зміни запасів дефіцитних ресурсів. Об’єктом дослідження є двоїста задача лінійного програмування: економічна інтерпретація знаходження оптимальних планів. Предметом дослідження є аналіз ринку ресурсів у передплановому періоді.
Мета роботи дослідити плани, здобуті за економіко-математичними моделями, на стійкість, а також оцінювання ситуацій, які мають виконуватися в передплановому періоді.
Достатність. За умовою виконуються рівняння
,
, .
Необхідно довести, що X* та Y* – оптимальні плани відповідно прямої (3.20) та двоїстої (3.21) задач. У кожному рівнянні розкриємо дужки та підсумуємо перше рівняння по , а друге – по . Отримаємо:
;
.
Ліві частини цих рівнянь однакові, отже, . Тоді за першою теоремою двоїстості, оскільки значення цільових функцій цих задач збігаються, можна висновувати, що X* та Y* – оптимальні плани спряжених симетричних задач. Теорему доведено.
Очевидніший взаємозв’язок між оптимальними планами прямої та двоїстої задач встановлює наслідок другої теореми двоїстості.
Наслідок. Якщо в результаті підстановки оптимального плану однієї із задач (прямої чи двоїстої) в систему обмежень цієї задачі і-те обмеження виконується як строга нерівність, то відповідна і-та компонента оптимального плану спряженої задачі дорівнює нулю.
Якщо і-та компонента оптимального плану однієї із задач додатна, то відповідне і-те обмеження спряженої задачі виконується для оптимального плану як рівняння.
Економічний зміст другої теореми двоїстості стосовно оптимального плану Х* прямої задачі. Якщо для виготовлення всієї продукції в обсязі, що визначається оптимальним планом Х*, витрати одного і-го ресурсу строго менші, ніж його загальний обсяг , то відповідна оцінка такого ресурсу (компонента оптимального плану двоїстої задачі) буде дорівнювати нулю, тобто такий ресурс за даних умов для виробництва не є «цінним».
Якщо ж витрати ресурсу дорівнюють його наявному обсягові , тобто його використано повністю, то він є «цінним» для виробництва, і його оцінка буде строго більшою від нуля.
Економічне тлумачення другої теореми двоїстості щодо оптимального плану Y* двоїстої задачі: у разі, коли деяке j-те обмеження виконується як нерівність, тобто всі витрати на виробництво одиниці j-го виду продукції перевищують її ціну сj, виробництво такого виду продукції є недоцільним, і в оптимальному плані прямої задачі обсяг такої продукції дорівнює нулю.
Якщо витрати на виробництво j-го виду продукції дорівнюють ціні одиниці продукції , то її необхідно виготовляти в обсязі, який визначає оптимальний план прямої задачі .
Як було з’ясовано в попередньому параграфі, існування двоїстих змінних уможливлює зіставлення витрат на виробництво і цін на продукцію, на підставі чого обґрунтовується висновок про доцільність чи недоцільність виробництва кожного виду продукції. Крім цього, значення двоїстої оцінки характеризує зміну значення цільової функції, що зумовлена малими змінами вільного члена відповідного обмеження. Дане твердження формулюється у вигляді такої теореми.
Теорема (третя теорема двоїстості). Компоненти оптимального плану двоїстої задачі дорівнюють значенням частинних похідних від цільової функції за відповідними аргументами , або
(3.28)
Доведення. Розглянемо задачу лінійного програмування, подану в канонічній формі:
(3.29)
(3.30)
(3.31)
Двоїсту задачу до задачі (3.29) – (3.31) сформулюємо так: знайти оптимальний план , за якого мінімізується значення
(3.32)
за умов:
(3.33)
причому умова невід’ємності змінних відсутня.
Позначимо – оптимальний план двоїстої задачі, – оптимальний план задачі (3.29) – (3.31). За першою теоремою двоїстості відомо, що:
,
або
. (3.34)
Оскільки досліджується питання впливу зміни значень на F, то лінійну функцію (3.34) можна розглядати як функцію від аргументів . Тоді частинні похідні за змінними будуть дорівнювати компонентам оптимального плану двоїстої задачі :
. (3.35)
Однак дане твердження справедливе лише у тому разі, коли компоненти оптимального плану залишаються постійними, а оскільки за першою теоремою двоїстості , то значення двоїстих оцінок будуть незмінними лише за умови постійної структури оптимального плану початкової задачі.
Отже, рівності (3.35) справджуються лише за незначних змін , інакше суттєва зміна умов початкової задачі (правих частин системи обмежень (3.30) та цільової функції (3.32)) приведе до зміни базису в оптимальному плані прямої задачі, а значить, і до іншого розв’язку двоїстої .
Економічний зміст третьої теореми двоїстості. Двоїсті оцінки є унікальним інструментом, який дає змогу зіставляти непорівнянні речі. Очевидно, що неможливим є просте зіставлення величин, які мають різні одиниці вимірювання. Якщо взяти як приклад виробничу задачу, то цікавим є питання: як змінюватиметься значення цільової функції (може вимірюватися в грошових одиницях) за зміни обсягів різних ресурсів (можуть вимірюватися в тоннах, м2, люд./год, га тощо).
Використовуючи третю теорему двоїстості, можна легко визначити вплив на зміну значення цільової функції збільшення чи зменшення обсягів окремих ресурсів: числові значення двоїстих оцінок показують, на яку величину змінюється цільова функція за зміни обсягу відповідного даній оцінці ресурсу .
Отже, за умови незначних змін замість задачі (3.29) – (3.31) маємо нову задачу, де замінено на . Позначимо через оптимальний план нової задачі. Для визначення не потрібно розв’язувати нову задачу лінійного програмування, а достатньо скористатися формулою , де – оптимальний план задачі (3.29) – (3.31).
Кожну з двох
спряжених задач можна розв’
До заданої задачі лінійного програмування записати двоїсту задачу. Розв’язати одну з них симплекс-методом та визначити оптимальний план другої задачі, використовуючи співвідношення першої теореми двоїстості.
max Z = – 5x1 + 2x2;
Розв’язання. Перш ніж записати двоїсту задачу, необхідно пряму задачу звести до стандартного вигляду. Оскільки цільова функція F максимізується і всистемі обмежень є нерівності, то їх слід звести до виду « ». Тому перше обмеження задачі помножимо на (–1). Отримаємо:
max Z = – 5x1 + 2x2;
Тепер за відповідними правилами складемо двоїсту задачу:
min F = – y1 + 5y2;
Оскільки записані задачі симетричні, то будь-яку з них можна розв’язати симплекс-методом. Наприклад, визначимо спочатку оптимальний план прямої задачі. Для цього застосуємо алгоритм симплекс-методу.
1. max Z = – 5x1 + 2x2 + 0x3 + 0x4;
2. Векторна форма запису системи обмежень має вигляд:
,
де , , , , .
У системі векторів
для утворення початкового
3. Розширена задача лінійного програмування буде такою:
maxZ = – 5x1 + 2x2 + 0x3 + 0x4 – Мx5;
У цій задачі х4 та х5 – базисні змінні, а х1, х2, х3 – вільні. Нехай х1 = х2 = х3 = 0, тоді х4 = 5; х5 = 1.
Перший опорний план задачі:
X0 = (0; 0; 0; 5; 1), Z0 = – M.
З останньої симплекс-таблиці запишемо оптимальний план прямої задачі:
Х* = (0; 5/3; 2/3; 0), Zmax = 10/3.
Згідно зі співвідношенням двоїстості за першою теоремою можна висновувати, що оптимальний план двоїстої задачі існує і min F = max Z = 10/3.
Компоненти вектора Y* (оптимальний план двоїстої задачі) визначимо за формулою:
,
де та міститься в стовпчику «сбаз» останньої симплекс-таблиці;
.
Матриця D– 1 також міститься в останній симплекс-таблиці у стовпчиках змінних «x5» та «x4», які утворювали початковий базис.
Отже,
,
min F = – 1 х 0 + 5 х 2/3 = 10/3.
Застосувавши для розв’язування прямої задачі симплекс-метод, ми знайшли її оптимальний план, а потім визначили оптимальний розв’язок двоїстої задачі за допомогою співвідношень першої теореми двоїстості.
До заданої задачі лінійного програмування записати двоїсту задачу. Розв’язавши двоїсту задачу графічно, визначити оптимальний план прямої задачі.
min Z = x1 + 2x2 + 2x3;
Розв’язання. За відповідними правилами побудуємо двоїсту задачу:
mах F = y1 + 4y2;
Зауважимо, що задачі несиметричні, і тому змінна у1, що відповідає першому рівнянню в системі обмежень прямої задачі, може мати будь-який знак, а змінна у2 – лише невід’ємна.
Двоїста задача має дві змінні, а отже, її можна розв’язати графічно (рис. 3.2).
Рис. 3.2
Найбільшого значення цільова функція двоїстої задачі F досягає в точці В багатокутника ABCD. Її координати визначимо розв’язанням системи рівнянь:
Отже, Y* = (– 2/3; 4/3); mах F = 1 х (– 2/3) + 4 х 4/3 = 14/3.
Оптимальний план прямої задачі визначимо за допомогою співвідношень другої теореми двоїстості.
Підставимо Y* у систему обмежень двоїстої задачі і з’ясуємо, як виконуються обмеження цієї задачі:
Оскільки перше обмеження для оптимального плану двоїстої задачі виконується як строга нерівність, то висновуємо, що перша змінна прямої задачі дорівнюватиме нулю х1 = 0 (перша частина другої теореми двоїстості).
Тепер проаналізуємо оптимальний план двоїстої задачі. Оскільки друга компонента плану у2 = 4/3 додатна, то друге обмеження прямої задачі для Х*виконуватиметься як строге рівняння (друга частина другої теореми двоїстості).
Об’єднуючи здобуту інформацію, можна записати систему обмежень прямої задачі як систему двох рівнянь, в якій х1 = 0, та визначити решту змінних:
тобто Х* = (0; 5/3; 2/3), min Z = 1 х 0 + 2 х 5/3 + 2 х 2/3 = 14/3.
Умова min Z = max F = 14/3 виконується, і тому Х* = (0; 5/3; 2/3); Y* = (– 2/3; 4/3) є оптимальними планами відповідно прямої та двоїстої задач.
Визначити, чи є оптимальними такі плани сформульованої задачі лінійного програмування:
min Z = 12x1 – 4x2 + 2x3;
а) Х = (8/7; 3/7; 0); б) Х = (0; 1/5; 8/5); в) Х = (1/3; 0; 1/3).
Розв’язання. Принцип розв’язування задач такого типу ґрунтується на використанні другої теореми двоїстості. Необхідно побудувати двоїсту задачу та, допускаючи, що відповідний план Х є оптимальним, визначити оптимальний розв’язок двоїстої задачі. Якщо при цьому екстремальні значення цільових функцій будуть однаковими за величиною, то припущення правильне. Протилежне можна висновувати в таких випадках:
1. Якщо запропонований план Х недопустимий, тобто не задовольняє систему обмежень прямої задачі.
2. Якщо визначений план двоїстої задачі недопустимий, тобто не задовольняє всі обмеження двоїстої задачі.
3. Якщо визначений план двоїстої задачі допустимий, але для нього екстремальне значення цільової функції F не дорівнює значенню функції Z, тобто не виконується умова першої теореми двоїстості.
Запишемо двоїсту задачу до прямої задачі лінійного програмування:
max F = y1 + 2y2;
Перевіримо запропоновані плани на оптимальність.
1. Х = (8/7; 3/7; 0). Підставимо його в систему обмежень прямої задачі:
Обидва обмеження виконуються, і тому Х = (8/7; 3/7; 0) є допустимим планом прямої задачі. Припустимо тепер, що зазначений план є оптимальним планом прямої задачі. Тоді розрахуємо для нього величину цільової функції: Z = 12 х 8/7 – 4 х 3/7 + 2 х 0 = 12.
Скористаємося другою теоремою двоїстості та визначимо відповідний план двоїстої задачі. Оскільки x1 = 8/7 > 0; x2 = 3/7 > 0, то згідно з другою частиною другої теореми двоїстості можна записати перше та друге обмеження як рівняння і визначити у1 та у2:
Підставимо ці значення в третє обмеження системи двоїстої задачі:
;
.
Для визначених значень у1 = 4; у2 = 4 це обмеження не виконується, і тому відповідний план у = (4; 4) є недопустимим планом двоїстої задачі. Внаслідок цього наше допущення, що Х = (8/7; 3/7; 0) є оптимальним планом прямої задачі, виявилося помилковим.
2. Х = (0; 1/5; 8/5). Підставимо цей план у систему обмежень прямої задачі:
План допустимий, і для нього Z = 12 х 0 – 4 х 1/5 + 2 х 8/5 = 12/5.
Визначимо відповідний план двоїстої задачі. Оскільки компоненти x2 та x3 додатні, то друге і третє обмеження двоїстої задачі можна записати як рівняння:
Перевіримо, чи виконується перше обмеження двоїстої задачі для визначених значень у1 та у2: 2 х 8/5 + 2/5 = 18/5 < 12. Отже, перше обмеження виконується, і тому у = (8/5; 2/5) є допустимим планом двоїстої задачі. Для нього
F = 8/5 + 2 х 2/5 = 12/5 = Z.
З огляду на викладене можна висновувати, що Y* = (8/5; 2/5) є оптимальним планом двоїстої задачі, а X* = (0; 1/5; 8/5) – оптимальним планом прямої задачі.
Наше припущення відносно запропонованого плану виявилося правильним.
3. Х = (1/3; 0; 1/3). Для цього плану обмеження прямої задачі виконуються так:
Оскільки Х = (1/3; 0; 1/3) є недопустимим планом, то він не може бути також оптимальним планом прямої задачі.
Отже, перевірка запропонованих планів на оптимальність дала такі результати: а) ні; б) так, Х* = (0; 1/5; 8/5), min Z = 12/5; в) ні.
1. Абрамов Л.М., Капустин В.Ф. Математическое программирование. Л., Изд-во Ленинград. ун-та, 1976. – 184 с.
2. Акулич И.Л. Математическое программирование в примерах и задачах. – М.: Высш. шк., 1985.
3. Ашманов С.А. Линейное программирование. – М.: Наука, 1981.
4. Белман Р. Динамическое программирование. – М.: Изд-во иностранной литературы, 1960.
5. Белман Р., Дрейфус С. Прикладные задачи динамического программирования. – М.: Наука, 1965.
6. Вагнер Г. Основы исследования операций. – Т. 1–3. – М.: Мир, 1972.
7. Вентцель Е.С. Исследование операций. М.: «Сов. радио», 1972. – 552 с.
8. Вентцель Е.С. Элементы динамического программирования. – М.: Наука, 1964.