Автоматизация проектирования ЭВТ

Автор: Пользователь скрыл имя, 02 Мая 2012 в 11:31, реферат

Описание работы

Длительное время РЭА разрабатывалась на основе блочного метода конструирования, предусматривающего расчленение аппаратуры с целью ее стандартизации и унификации до уровня блока (отсюда и название метода). Однако этот метод конструирования не позволял автоматизировать производственные процессы сборки и монтажа РЭА и с течением времени, по мере усложнения аппаратуры, был заменен функционально-узловым методом, при котором сложные функциональные схемы составляются из простейших функциональных узлов.

Работа содержит 1 файл

автоматизация проектирования ЭВТ.docx

— 31.10 Кб (Скачать)

     Кроме перечисленных задач на стадии конструкторского проектирования выполняют работы, связанные  с анализом получаемых конструктивных решений с точки зрения распределения  электромагнитных и температурных  полей, полей механических напряжений; расчетом паразитных связей между элементами конструкции и оценкой надежности разрабатываемого устройства.

     Так как помимо конструкций электронных  узлов и блоков в общий состав радиоэлектронной аппаратуры обычно входят механические и электромеханические  узлы и блоки (механические передачи, точные механизмы, сельсины и т. п.), а также элементы несущих конструкций (платы, рамки, шасси и т. п.), то на данной стадии проектирования также  осуществляют расчет механических характеристик  и выбор основных параметров этих конструктивных единиц.

     Конечным  результатом всех проводимых на стадии конструкторского проектирования работ  является выпуск конструкторской и  эксплуатационной документации на электрические  и механические части разрабатываемого изделия, которая должна быть оформлена  в строгом соответствии с ЕСКД.

     Цель  технологического проектирования —  разработка технологии и составление  технологической документации, необходимой  для организации производства изделий.

     Таким образом, в результате рассмотрения основных этапов проектирования РЭА  и возможностей их автоматизации  можно сделать следующий вывод. На первых двух этапах проектирования (системном и схемотехническом) большая  часть решаемых задач носит ярко выраженный творческий характер. При  этом в работе участвует, как правило, небольшое число специалистов высокой  квалификации. Влияние полученных решений  на основные показатели разрабатываемой  РЭА велико. ЭВМ на данных этапах применяют главным образом для  анализа и контроля выполненной  человеком работы. Следующий этап проектирования (технический), наоборот, характеризуется большей трудоемкостью  и, следовательно, большим количеством  разработчиков. Решаемые на данном этапе  задачи являются в основном "рутинными" и по своей природе хорошо формализуются, что благоприятствует использованию машинных методов их решения. Поэтому естественно, что наиболее широкое развитие получили системы, предназначенные для решения задач конструкторского проектирования РЭА, так как именно в этой области эффективность внедрения САПР оказывается максимальной.

     РОЛЬ  ЯЗЫКА ПРОГРАММИРОВАНИЯ В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ МАШИННОГО  ПРОЕКТИРОВАНИЯ

 

     Решение каждой конкретной задачи проектирования конструкций РЭА с применением  ЭВМ требует ее описания в виде программы на языке, воспринимаемом процессором машины и понятном конструктору-оператору.

     Введем  понятия языка программирования, а также машинно-ориентированного и процедурно-ориентированного языков, с помощью которых осуществляется обмен информацией между оператором и ЭВМ.

     Под языком программирования понимают формальный язык связи человека с вычислительной машиной, служащий для представления  исходной информации и результатов  вычислений, а также программ обработки  данных в удобном для пользователя и понятном вычислительной машине виде. Основу всех языков программирования составляют алгоритмические языки, разрабатываемые в соответствии с требованиями теории алгоритмов, которые рассмотрены в гл. 3. Все  используемые в настоящее время  языки программирования можно разделить  на машинно-ориентированные, процедурно- и проблемно-ориентированные, а также  языки общего назначения.

     Характерной чертой машинно-ориентированных языков является учет структуры ЭВМ и  особенностей выполнения ею отдельных  операций. Благодаря этому машинно-ориентированные  языки позволяют составлять компактные программы, которые по своей эффективности  практически не отличаются от программ, написанных непосредственно в кодах  машины, и в то же время достаточно широко используют привычные для  человека обозначения, что упрощает процесс программирования. Однако такие  программы, ориентированные на конкретные вычислительные машины, мало пригодны для обмена информацией и создания фонда алгоритмов и программ. Поэтому  данный класс языков программирования применяют для создания математического  обеспечения ЭВМ, включающего в  себя управляющие программы, организующие распределение памяти, управление последовательностью выполнения операций, обмен информацией процессора с внешними устройствами и т. п., и обрабатывающие программы, объединяемые в библиотеки стандартных подпрограмм и реализующие собственно процедуры обработки информации (вычисление элементарных функций, решение систем алгебраических и дифференциальных уравнений и т. д.).

     Процедурно - ориентированные языки представляют собой языки более высокого уровня формального описания решения задач, позволяющие записывать программы  в привычной для пользователя форме в виде терминов без учета  особенностей вычислительной машины. Перевод этих программ на язык конкретной ЭВМ осуществляется автоматически  с помощью транслятора (специальной  программы-переводчика). Использование  таких языков позволило решить задачу совместимости программ для различных  ЭВМ, упростить процесс их написания  и отладки. Отличительной особенностью данного класса языков является их ориентация на конкретные классы задач, что привело к появлению большого числа языков различной ориентации.

     По  мере развития вычислительной техники  и расширения сферы ее использования  все больший удельный вес стали  приобретать задачи, описания которых  выходят за рамки какого-либо одного процедурно-ориентированного языка. Это  привело к созданию языков общего назначения, удобных и эффективных  для решения любого, имеющего практическое значение класса задач. В настоящее  время наиболее полно этим требованиям  удовлетворяют языки ПЛ-1, СИМУЛА-67 и АЛГОЛ-68.

     Особую  группу языков программирования образуют проблемно - ориентированные языки, предназначенные для описания специальных  научно-технических проблем. Типичными  представителями этой группы являются языки STRESS, разработанный для решения задач конструирования, и ОСС-2 (язык описания структурных алгоритмов и схем), обеспечивающий описание задачи, начиная с самого высокого уровня абстракции (например, уровня архитектуры обобщенной модели семейства ЭВМ) и кончая уровнем принципиальных схем. Для их использования программа помимо исходных данных должна содержать указания, к какому классу следует отнести ту или иную задачу, решаемую на очередном этапе. Это, в свою очередь, требует либо создания универсального для описания рассматриваемых задач языка, интерпретирующего исходные данные, либо разработки алгоритма анализа исходных данных и определения принадлежности каждой частной задачи к тому или иному классу с последующим выбором соответствующей методики ее решения, которая может быть представлена как в машинно-ориентированном, так и в процедурно-ориентированном языке.

     Обилие  существующих в настоящее время  языков программирования, а также  различный уровень имеющегося для  них математического обеспечения  обусловливают важность задачи обоснованного  выбора базового языка, так как от правильности ее решения во многом зависит эффективность использования  разрабатываемой системы машинного  проектирования.

     К базовому языку САПР предъявляют  следующие основные требования: простота описания входной первичной информации; малые затраты машинного времени  на реализацию программы, записанной в  символах языка; удобство стыковки отдельных  программ; наличие в языке средств  описания информации специального вида; возможность использования современного математического обеспечения, представляемого  на.одном из процедурно-ориентированных  языков; простота внесения изменений в текст программы, записанной в символах языка.

     Опыт  создания систем автоматизированного  проектирования в нашей стране и  за рубежом свидетельствует в  пользу таких языков программирования, как АЛГОЛ-68, ПЛ-1 и других языков подобного класса.

     ТЕНДЕНЦИИ РАЗВИТИЯ СИСТЕМ АВТОМАТИЗИРОВАННОГО  КОНСТРУИРОВАНИЯ

 

     В настоящее время создание систем автоматизированного конструирования  развивается по следующим двум направлениям:

     1) проектирование систем, работающих  в режиме пакетной обработки  информации;

     2) конструирование систем, работающих  в режиме диалога конструктора-оператора с ЭВМ.

     Системы, работающие в первом режиме, исключают  непосредственное взаимодействие пользователя с ЭВМ. Программы собираются в  пакет и вводятся автоматически  в последовательности, определяемой программой-диспетчером. При этом возможна лишь некоторая, как правило незначительная, перестройка системы на основании  указаний конструктора-оператора, заключающаяся  в изменении последовательности решения задач на каждом этапе  проектирования. В таких системах коррекция полученных результатов  возможна лишь после окончания обработки  информации на ЭВМ и отображении  ее на соответствующем носителе. Данный режим работы системы пригоден лишь для решения задач, не содержащих большого числа противоречивых требований, приводящих к неоднозначности решений и требующих вмешательства разработчика.

     К таким задачам можно отнести  задачи анализа и моделирования  полей различной физической природы, действующих в конструкциях РЭА, так как эти задачи сводятся к  чисто расчетным вычислительным операциям, гарантирующим однозначное решение.

     Системы, работающие во втором режиме, предусматривают  связь разработчика е ЭВМ через  специальный дистанционный пульт. При этом оказывается возможным  активное вмешательство разработчика в работу системы. Необходимость  такого вмешательства на различных  этапах проектирования, накладывает  определенные требования на характеристики используемой в САПР машины. Если вычислительная машина, на которой проводится проектирование конструкций РЭА, работает в режиме последовательной обработки информации, то каждое вмешательство потребует  больших затрат времени: распечатка с помощью ЭВМ полученных результатов, передача их разработчику, нанесение  указаний разработчика на перфокарты (перфоленту) и введение их в машину. Поэтому разработчик должен иметь  возможность непосредственного  общения с машиной. Для того чтобы  при этом не было непроизводительных потерь машинного времени, машина во время проектирования должна работать в режиме разделения времени. В подобном режиме имеется возможность выполнения нескольких задач одновременно, без  заметной задержки в завершении каждой из них по сравнению с раздельным решением этих задач.

     Дальнейшее  развитие таких систем связано с  использованием специальных многопроцессорных  ЭВМ, в которых подобный эффект разделения времени выполнения операций достигается не программными, а аппаратными средствами.

     На  различных этапах проектирования вводимая информация и результаты работы машины имеют различную форму записи (запись на языке проектирования, схемы  размещения конструктивных элементов, таблицы, чертежи печатных плат и  т. п.). Пульт разработчика должен обеспечивать быстрый ввод и вывод как алфавитно-цифровой, так и графической информации. Наиболее удобен для этих целей пульт  с индикатором на ЭЛТ и световым пером — дисплей с ЭЛТ и  световым пером. Использование таких  систем целесообразно при решении  задач, в которых встречаются  противоречивые требования к большому числу параметров, что приводит к  неоднозначности решений и не всегда позволяет построить пригодные  для ЭВМ критерии выбора оптимального решения.

     Так, например, при компоновке ячеек из модулей желательно реализовать  возможно большее число связей между  модулями внутри ячейки (улучшает электрические  характеристики прибора) и одновременно стремиться к наименьшему числу  разнотипных ячеек (диктуется интересами производства и эксплуатации). Поиск  оптимального решения приводит к  перебору всех возможных вариантов  компоновки, что практически невозможно из-за слишком больших затрат машинного  времени. Вмешательство разработчика в процесс решения такой задачи ускоряет нахождение приемлемого результата.

     При машинном проектировании печатного  монтажа в случае плат с высокой  плотностью расположения проводников  удается развести не более 90% соединений. Вмешательство человека позволяет  улучшить качество получаемого решения. В связи с этим для решения  конструкторских задач по компоновке, размещению и трассировке проводников целесообразнее использовать САПР, работающие в диалоговом режиме.

     КРАТКАЯ ХАРАКТЕРИСТИКА ВЫЧИСЛИТЕЛЬНЫХ МАШИН, ИСПОЛЬЗУЕМЫХ ПРИ РЕШЕНИИ ЗАДАЧ  АВТОМАТИЗАЦИИ ПРОЕКТИРОВАНИЯ РЭА

 

     При выборе ЭВМ для решения определенного  класса задач автоматизированного  проектирования и работы ее в составе  САПР в первую очередь учитывают  такие параметры машин, как производительность (быстродействие) и объем оперативной  памяти, а также состав периферийного  оборудования, входящий в комплект данной ЭВМ

     Большинство действующих систем строилось на основе ЭВМ трех-адресного типа: М-220, М-222 и БЭСМ-4М. Хотя эти ЭВМ  и обладали малой производительностью, но имели широко развитое математическое обеспечение. Расширение оперативных  возможностей таких машин осуществлялось за счет подключения внешних запоминающих устройств (ЗУ) на магнитных барабанах (МБ). В качестве алгоритмических  языков использовались АЛГОЛ-60 и АВТОКОД.

Информация о работе Автоматизация проектирования ЭВТ