Ядерная энергетика

Автор: Пользователь скрыл имя, 11 Февраля 2013 в 14:53, реферат

Описание работы

В истории человечества не было научного события, более выдающегося по своим последствиям, чем открытие деления ядер урана и овладения ядерной энергией. Человек получил в свое распоряжение огромную, ни с чем не сравнимую силу, новый могучий источник энергии, заложенный в ядрах атомов.
История атомного века началась, конечно, раньше августа 1945 г. когда весть о трагедии Хиросимы потрясла мир.

Работа содержит 1 файл

Ядерная энергетика.doc

— 65.50 Кб (Скачать)

Чтобы в системе, в данном случае в ядерном реакторе, содержащей делящиеся  изотопы, например уран-235, могла поддерживаться цепная реакция, необходимо выполнение ряда условий. Во-первых, масса делящегося вещества должна быть не меньше критической, т. е. система должна содержать уран-235 в количестве, достаточном для того, чтобы в среднем один нейтрон из числа получающихся при каждом акте деления ядра смог бы вызвать следующий акт деления, прежде чем он покинет систему. Во-вторых, система, содержащая ядерное топливо, должна быть окружена материалом, который как бы улавливает выходящие из нее нейтроны и возвращает их обратно, т. е. отражает. Вообще в природе не существует материала, отражающего нейтроны непосредственно в обратном направлении. Механизм работы отражателя состоит в том, что попадающие в него нейтроны беспорядочно движутся по искривленным траекториям и, не испытывая захвата со стороны атомов отражателя, в конце концов частично (в идеальном случае до 50%) попадают обратно в активную зону. Третье условие — это снижение вредного захвата нейтронов в неделящихся материалах системы, которые непосредственно не участвуют в цепной реакции, но их ядерные характеристики таковы, что требуют оптимального решения в выборе соответствующих материалов с точки зрения сохранения нейтронов.

И, наконец, одним из важнейших условий осуществления полностью контролируемой цепной реакции деления ядер атомов служит наличие средств управления ею, т. е. регулирования ее хода и скорости прохождения.

Природа размножения нейтронов  и короткое время их жизни (немногим больше 10 мин) обусловливают практически мгновенное изменение скорости реакции даже при ничтожном изменении одного из параметров. Проблема регулирования процесса, происходящего в ядерном реакторе, сводится к оперативному управлению ходом физической реакции, к мерам по поддержанию реактора возможно дольше в рабочем состоянии и к мерам аварийной защиты реакторной системы. При этом необходимо поддерживать реактивность реактора на заданном уровне. Если число возникающих нейтронов превышает число поглощаемых, то мощность реактора растет, т. е. реактивность положительна. Если число возникающих нейтронов меньше числа поглощаемых, мощность реактора падает, т. е. реактивность отрицательна. Если число возникающих и поглощающих нейтронов одинаково, реактивность реактора равна нулю, т. е. реактор работает в стационарном установившемся режиме и его мощность неизменна. "Особое значение в энергетических реакторах имеет теплоноситель как средство охлаждения реактора и переноса тепла из его активной зоны, которое в конечном итоге превращается в генерируемую реакторной системой энергию.

С теплоносителем связаны особые проблемы, поскольку это единственный элемент в реакторе, который постоянно присутствует в движении как внутри активной зоны реактора, так и вне его. Контактируя с активной зоной, теплоноситель сам становится радиоактивным, поэтому большинство систем энергетических реакторов имеет два или даже три замкнутых циркуляционных контура. Например, при двухконтурной тепловой схеме первичный теплоноситель забирает тепло от реактора и через парогенератор передает его вторичному теплоносителю, будучи связанным с жидкостью второго контура не прямо, а только через так называемое трубное пространство. Таким образом радиоактивная жидкость первого контура полностью изолируется от второго, передающего тепло (пар необходимых параметров) турбинам. Исключение составляют реакторные системы с замкнутым контуром, у которых первичный теплоноситель (газ или водяной пар) непосредственно приводит в действие турбины

Для защиты от нейтронов, гамма-излучений и высокой температуры  в системе используются специальные  материалы, такие, как сталь (в том  числе нержавеющая), свинец, обычный бетон или бетон с содержанием окислов железа (тяжелый) и т. д. , которыми окружают реактор. Интенсивность гамма-излучения ядерного реактора настолько высока, что охлаждение «защиты», поглощающей это излучение, вызывает серьезные затруднения. Расположенные ближе к центру реактора защитные средства для отвода тепла часто снабжаются каналами, по которым протекает теплоноситель. Во внешней части защиты часто применяют тепловой экран. Последний слой защиты предусматривает снижение уровня излучения до величины, не приносящей вреда здоровью человека, — это так называемая биологическая защита

Все внутренние конструктивные элементы реактора (в том числе  активная зона) заключены в прочно - плотный стальной корпус, который  должен выдерживать внутреннее давление более 100 ат., чтобы при взрыве системы не произошло разрыва и выброса радиоактивных продуктов деления во внешнюю среду.

В настоящее время в мире существует большое количество реакторных систем. Теория и практика ядерных реакторов  движется по линии усовершенствования, улучшения уже освоенных типов и создания новых видов ядерных энергетических реакторов, применения новых видов теплоносителей, замедлителей нейтронов, новых видов материалов для оболочек тепловыделяющих элементов (твэлов) и т. д.

Классификация ядерных реакторов, имея в виду их разнообразие, уже достаточно ясно вырисовывается. По размещению ядерного топлива различаются реакторы гетерогенного и гомогенного типов. В гетерогенных реакторах, получивших наибольшее распространение, ядерное горючее расположено в замедлителе в виде отдельных блоков. В гомогенных ядерное топливо находится в виде жидкости, раствора или мелко размельченного порошка, которые полностью смешиваются с твердым или жидким замедлителем. Ядерные реакторы также различаются по спектру нейтронов (тепловые, быстрые и промежуточные), по видам замедлителей (тяжелая вода, обычная вода, графит, органика, гидрид циркония), по видам теплоносителей (тяжелая вода, обычная вода, органика, газ, жидкий металл, в том числе натрий, и т. д.). Возможны также различные комбинации между ними.

В настоящее время в разных странах  мира для получения электроэнергии преимущественно используются энергетические реакторы на тепловых нейтронах как более простые и освоенные. В перспективном плане ядерной энергетики и строительства АЭС основное внимание отводится реакторам на быстрых нейтронах, которые не только обеспечивают себя ядерным топливом, но и накапливают его. Источниками нейтронов могут быть ускорители заряженных частиц, различные генераторы, ядерные реакторы и др. В ядерной энергетике используются реакторы — один из мощнейших источников нейтронов.




Информация о работе Ядерная энергетика