Высокочастотная электротерапия

Автор: Пользователь скрыл имя, 31 Октября 2011 в 10:30, реферат

Описание работы

ВЫСОКОЧАСТОТНАЯ ЭЛЕКТРОТЕРАПИЯ - применение с лечебно-профилактическими и реабилитационными целями переменных токов, электромагнитных полей или их составляющих (электрическое и магнитное поле) высокой, ультравысокой, сверхвысокой и крайне высокой частоты.

Работа содержит 1 файл

Физика. Высокочастотные колебания..doc

— 39.50 Кб (Скачать)

Высокочастотная электротерапия

ВЫСОКОЧАСТОТНАЯ ЭЛЕКТРОТЕРАПИЯ - применение с лечебно-профилактическими  и реабилитационными целями переменных токов, электромагнитных полей или их составляющих (электрическое и магнитное поле) высокой, ультравысокой, сверхвысокой и крайне высокой частоты.

В основе любых  механизмов лечебного действия высокочастотных  колебаний лежит первичное действие их на электрически заряженные частицы (электроны атомы и молекулы) веществ, из которых состоят ткани организма. В действии высокочастотных колебаний различают две основные группы эффектов - тепловой эффект и так называемый специфический эффект.

Тепловой эффект, получаемый под действием высокочастотных колебаний, отличается от теплового эффекта, получаемого другими методами (грелки, укутывания, инфракрасное облучение и др.), рядом существенных преимуществ. Нагревание тканей токами и полями высокой частоты происходит не за счет передачи тепла, подведенного к поверхности тела, а за счет непосредственного выделения теплоты в расположенных внутри тела тканях и органах. Это позволяет в значительной степени исключить теплоизолирующее действие слоя кожи и подкожной жировой клетчатки, а также теплорегуляционное действие системы кровообращения, значительно ослабляющее передачу тепла вглубь с поверхности тела.

Особенностью  теплового действия высокочастотных  колебаний является то, что количество теплоты, выделяющееся в тех или  иных органах и тканях организма, зависит как от параметров колебаний, главным образом частоты, так и от электрических свойств самих тканей. Поэтому, подбирая соответствующим образом частоту колебаний, можно обеспечить в какой-то степени «терма-селективное» действие, т.е. преимущественное выделение тепла в определенных тканях.

Немаловажным  преимуществом высокочастотных  методов является возможность легко  регулировать мощность колебаний, действующих  на объект, и соответственно интенсивность  теплового эффекта, при некоторых  методах возможно и довольно точное измерение этой мощности.

Специфический эффект от действия высокочастотных  колебаний, наиболее явно проявляющийся  при ультра- и сверхвысоких частотах, заключается в различных внутримолекулярных физико-химических процессах, или структурных перестройках, которые могут изменять функциональное состояние клеток тканей.

В качестве примеров можно указать на выстраивание в  цепочки, ориентированные параллельно  электрическим силовым линиям, эритроцитов, лейкоцитов и некоторых других клеток и частиц, ориентирование по полю поляризованных боковых ветвей белковых макромолекул и др.

Следует отметить, что механизмы «специфического» действия высокочастотных колебаний  изучены еще недостаточно и в  ряде случаев имеют характер гипотез, однако многие из них получили не только теоретическое, но и экспериментальное подтверждение.

Для лучшего  понимания особенностей действия на организм различных форм энергии  высокочастотных колебаний, зависимости  от частоты глубины проникновения  и распределения поглощенной  энергии между тканями и др. необходимо рассмотреть электрические параметры тканей организма.

Электрические параметры биологических тканей, так же как и любого другого  вещества, могут быть охарактеризованы диэлектрической проницаемостью и  удельной электрической проводимостью. 

Диатермия

Диатермия - один из первых методов высокочастотной  терапии была введена в медицинскую  практику в начале ХХ века. Сущность диатермии заключается в прогревании  тканей тела высокочастотным током (1,5-2 МГц), проходящим между двумя  контактно наложенными на поверхность тела металлическими электродами.

Возможность использования  теплового эффекта, создаваемого значительным по силе током (до 2 А), основано на снижении раздражающего действия переменного  тока с повышением его частоты.

Раздражающее действие тока обусловлено нарушением ионного равновесия между протоплазмой клетки и окружающей клетку средой, которое происходит вследствие смещения ионов от своего среднего положения.

При прохождении  через ткани переменного тока ионы электролитов, входящих в состав тканей, приходят в колебательное движение. С увеличением частоты тока время движения ионов в одном направлении, следовательно, и их максимальное смещение уменьшаются. Соответственно уменьшается и раздражающее действие тока. При частоте колебаний порядка несколько сотен килогерц смещение становится соизмеримым со смещением в процессе теплового (молекулярного) движения, и переменный ток никакого раздражающего действия на ткани организма не оказывает.

Тепловое действие тока при диатермии определяется, в основном, ионными потерями, т.е. выделением тепла, происходящим при колебательном движении ионов. В связи с относительно низкой частотой, используемой при диатермии, диэлектрические потери в тканях невелики. Количество тепла q в калориях, выделяемое за единицу времени в единице объема однородной ткани, может быть рассчитано на основании закона Джоуля-Ленца, где j-плотность тока, - удельное сопротивление ткани.

На частотах 1-2 МГц удельное сопротивление тканей с большим содержанием жидкостей (кровь, мышцы, ткани внутренних органов) составляет 100-200 Ом.см, удельное сопротивление бедных электролитами жировой и костной ткани значительно выше и составляет 2000-5000 Ом.см.

При проведении диатермии высокочастотный ток проходит последовательно через переходное сопротивление между электродом и кожей, слой кожи и подкожной жировой клетчатки, мышечные и другие глубоко лежащие ткани. В результате относительно более высокого удельного сопротивления кожи и жировой клетчатки в этих тканях выделяется наибольшее количество тепла. Это нежелательное распределение теплоты по слоям тканей усугубляется и тем, что при контактном наложении электродов непосредственно под ними имеет место повышенная плотность тока, а в глубоко расположенных тканях пути тока разветвляются, и плотность тока значительно снижается. Преимущественный нагрев поверхностных слоев тканей тела - существенный недостаток диатермии, ограничивающий возможности ее применения.

При диатермии  используют металлические электроды, форма и размер которых находятся в соответствии с подлежащей воздействию соответствующей частью тела. Наиболее часто применяются пластинчатые электроды, которые изготавливают из луженого свинца толщиной 0,5-1мм. Электроды располагают обычно друг против друга (поперечно) так, чтобы подвергаемая воздействию область тела находилась между ними.

Кроме пластинчатых, используют также полые фигурные электроды из нержавеющей стали: цилиндрические - для кистей рук, яйцевидные разных размеров - для влагалища, плоские, изогнутые под тупым углом - для простаты и т. д. Для воздействия на конечности находят также применение ванночки из пластмассы, наполненные 10% раствором поваренной соли.

При проведении диатермии в течение всего  времени процедуры должен быть обеспечен хороший контакт между всей поверхностью электрода и кожей (слизистой оболочкой). Для этого пластинчатые электроды плотно прибинтовывают к телу с помощью резинового бинта (рис. 3), а при необходимости дополнительно прижимают мешочками с песком. При нарушении контакта между частью поверхности электрода и телом увеличивается плотность тока и соответственно нагрев кожи, что может привести к ожогам.

При определенных условиях между неплотно прилегающим  электродом и телом больного возможно возникновение высокочастотных искр. В связи с выпрямляющим действием искры при этом не исключено прохождение через ткани и органы импульсов тока низкой частоты, которые могут представить опасность для больного. Возможность местных ожогов при нарушении правил наложения электродов - также существенный недостаток диатермии.

Тепловое действие высокочастотного тока прямо пропорционально  квадрату его плотности, а, следовательно, при определенной площади электродов и области воздействия - квадрату силы тока. Поэтому дозиметрия при диатермии осуществляется измерением высокочастотного тока в цепи пациента. Величина тока выбирается, исходя из площади меньшего из примененных электродов и допустимой плотности тока, составляющей в среднем 0,01-0,015 А/см2. При использовании внутриполостных электродов в связи с улучшением контакта и уменьшением переходного сопротивления между электродом и телом плотность тока может быть повышена до 0,03 А/см2.

Важным критерием  при проведении диатермии являются ощущения, испытываемые больным. Ощущения жжения или чрезмерного тепла под электродом свидетельствуют о его неплотном прилегании или неровной поверхности. Эти недостатки должны быть немедленно устранены.

Следует иметь  в виду, что величина высокочастотного тока, проходящего через тело пациента, может служить только для косвенной оценки энергии, выделяемой в тканях пациента. Это объясняется, прежде всего тем, что общее количество выделившегося тепла при одной и той же величине тока может колебаться в значительных пределах в зависимости от сопротивления участка тканей между электродами, которое, в свою очередь, зависит от площади электродов и строения тканей тела пациента в области воздействия. Кроме того, как уже указывалось, при диатермии имеет место крайне неравномерное распределение тепла между поверхностными и глубоко расположенными слоями тканей, причем в глубине тела ток разветвляется на параллельные ветви, проходящие через участки тканей с наименьшим сопротивлением (кровь, мышцы), обходя костные и жировые ткани. Таким образом, при диатермии трудно обеспечить местный нагрев определенных участков тела, особенно при их глубоком расположении.

В связи с  указанными выше недостатками диатермии  с появлением новых более эффективных  методов диатермия постепенно выходит  из широкой практики, а серийный выпуск аппаратов для диатермии прекращен. 

Информация о работе Высокочастотная электротерапия