Возникновение и развитие квантовой физики

Автор: Пользователь скрыл имя, 17 Марта 2012 в 21:32, реферат

Описание работы

В рамках классической физики дискретность и непрерывность мира первоначально выступают как противоположные друг другу, отдельные и независимые, хотя в целом и взаимодополняющие свойства. В современной физике это единство противоположностей, дискретного и непрерывного нашло свое обоснование в концепции корпускулярно-волнового дуализма.
В основе современной квантово-полевой картины мира лежит новая физическая теория — квантовая механика, описывающая состояние и движение микрообъектов материального мира.

Содержание

Введение..………………………………………………………………………3
Глава I Возникновение и развитие квантовой физики………………………4
1.1 Гипотеза квантов……………………………………………………...8
1.2 Теория атома И.Бора. Принцип соответствия……………………...11
Глава II Проблемы квантовой механики…………………………………….13
1.3 Создание нерелятивистской квантовой механики………………...13
1.4 Проблема интерпретации квантовой механики….……...................16
Заключение……………………………………………………………………19
Список используемой литературы…………………………………………...20

Работа содержит 1 файл

реферат по ксе.doc

— 97.50 Кб (Скачать)

 

 

 

 

 

 

 

 

 

1.2 Теория атома Н. Бора. Принцип соответствия

 

Более совершенную квантовую модель атома предложил в 1913 г. молодой датский физик Н. Бор, работавший в лаборатории Резерфорда. Бор понял, что для построения теории, которая объясняла бы и результаты опытов по рассеянию α -частиц, и устойчивость атома, и сериальные закономерности, и ряд других экспериментальных данных, нужно отказаться от ряда принципов классической физики. Бор взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые не следуют или даже противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Они сводятся к следующему.

1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определенной орбите, с определенным значением энергии, не испуская и не поглощая электромагнитного излучения. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е1, Е2, ..., Еn. Состояния эти характеризуется своей устойчивостью. Всякое изменение энергии в результате поглощения или испускания электромагнитного излучения может происходить только скачком из одного состояния в другое.

2. Электрон способен переходить с одной стационарной орбиты на другую. Только в этом случае он испускает или поглощает определенную порцию энергии монохроматического излучения определенной частоты. Эта частота зависит от уровня изменения энергии атома при таком переходе. Если при переходе электрона с орбиты на орбиту энергия атома изменяется от Еm до Еn, то испускаемая или поглощаемая частота определяется условием

 

 

Эти постулаты Бор использовал для расчета простейшего атома (водорода), рассматривая первоначально наиболее простую его модель: неподвижное ядро, вокруг которого по круговой орбите вращается электрон. Объяснение спектра водорода было большим успехом теории Бора.

Квантовые постулаты Бора были лишь первым шагом в создании теории атома, поэтому пришлось воспользоваться следующим приемом: сначала задача решалась при помощи классической механики (заведомо неприменимой полностью к внутриатомным движениям), а затем из всего непрерывного множества состояний движения, к которым приводит классическая механика, на основе квантовых постулатов отбирались квантовые состояния. Несмотря на все несовершенство этого метода, он привел к большим успехам — позволил объяснить сложные закономерности в атомных и молекулярных спектрах, осмыслить природу химических взаимодействий и др. Такой подход, по сути, является частным случаем общего принципа, играющего важную роль в современной теоретической физике — принципа соответствия, который гласит, что всякая неклассическая теория в соответствующем предельном случае переходит в классическую.

 

 

 

 

 

 

 

 

 

 

 

 

Глава II. Проблемы квантовой механики

 

Важным достижением Бора и других исследователей было развитие представления о строении многоэлектронных атомов. Предпринятые шаги в развитии теории строения более сложных (чем водород) атомов и объяснении структуры их спектров принесли некоторые успехи, однако здесь исследователи столкнулись с большими трудностями. Введение четырех квантовых чисел, характеризующих состояния электрона в атоме, установление принципа Паули (согласно которому две тождественный частицы с полуцелым спином не могут одновременно находиться в одном состоянии) и объяснение периодической системы Менделеева — большие успехи теории атома Бора. Однако они не означали, что эту теорию можно считать завершенной. Во-первых, постулаты Бора и многие принципы его теории имели характер непонятных, ни откуда не следуемых утверждений, которые еще должны получить свое обоснование. Во-вторых, в некоторых даже довольно простых случаях применение данной теории встречало непреодолимые трудности; так, например, попытки теоретически рассчитать даже такой, казалось бы, простой атом, как атом гелия, не привели к успеху. Физики ясно понимали неудовлетворительность боровской теории атома.

Таким образом, в первой четверти XX в. перед физикой все еще стояла задача поиска новых путей развития теории атомных явлений.

 

1.3 Создание нерелятивистской квантовой механики

 

Такие новые представления и принципы были созданы плеядой выдающихся физиков XX в. в 1925—1927 гг.: В. Гейзенберг установил основы так называемой матричной механики; Л. де Бройль, а за ним Э. Шредингер разработали волновую механику. Вскоре выяснилось, что и матричная механика, и волновая механика — различные формы единой теории, получившей название квантовой механики.

К созданию матричной механики В. Гейзенберг пришел в результате исследований спектральных закономерностей, а также теории дисперсии, где атом представлялся некоторой символической математической моделью — как совокупность виртуальных гармонических осцилляторов. Представления об атоме как о системе, состоящей из ядра и вращающихся вокруг него электронов, которые обладают определенной массой, движутся с определенной скоростью по определенной орбите, нужно понимать лишь как аналогию для установления математической модели. Указанный метод исследования и развил Гейзенберг, распространив его вообще на теорию атомных явлений.

В 1926 г. Гейзенберг впервые высказал основные положения квантовой механики в матричной форме. Теория атомных явлений, по Гейзенбергу, должна ограничиваться установлением соотношений между величинами, которые непосредственно измеряются в экспериментальных исследованиях («наблюдаемыми» величинами, в терминологии Гейзенберга) — частотой излучения спектральных линий, их интенсивностью, поляризацией и т.п. «Ненаблюдаемые» величины, такие, как координаты электрона, его скорость, траектория, по которой он движется, и т.д., не следует использовать в теории атома.

Однако в согласии с принципом соответствия новая теория должнa определенным образом соответствовать классическим теориям, т.е. соотношения величин новой теории должны быть аналогичными соотношениям классических величин. При этом каждой классической величине нужно найти соответствующую ей квантовую величину и, пользуясь классическими соотношениями, составить соответствующие им соотношения между найденными квантовыми величинами. Такие соответствия могут быть получены только из операций измерения.

Анализируя закономерности измерения величин в квантовой механике, Гейзенберг приходит к важному принципиальному результату о невозможности одновременного точного измерения двух канонически сопряженных величин и устанавливает так называемое соотношение неопределенностей

 

 

где Δqi— точность измерения какой-либо из координат частицы; Δpi — точность одновременного измерения соответствующего импульса; h— постоянная Планка.

Этот принцип является основой физической интерпретации квантовой механики.

На первые работы де Бройля, в которых высказывалась идея волн, связанных с материальными частицами, не обратили серьезного внимания. Де Бройль впоследствии писал, что высказанные им идеи были приняты с «удивлением, к которому несомненно примешивалась какая-то доля скептицизма». Но не все скептически отнеслись к идеям де Бройля. Особенно сильное влияние идеи де Бройля оказали на Э. Шрёдингера, который увидел в них основу для создания новой теории квантовых процессов. В 1926 г. Шрёдингер, развивая идеи де Бройля, построил так называемую волновую механику.

Квантовая механика — теоретическая основа современной химии. Ядро атома с порядковым номером N и массовым числом М содержит N протонов и (М- N) нейтронов (всего М нуклонов). Число электронов оболочек равно числу протонов в ядре, поэтому в нормальном состоянии атом нейтрален. Электроны распределяются на оболочках в строгом порядке: на первой к ядру не более 2 электронов; на второй — не более 8; на третей — не более 18 и т.д. Когда два атома сталкиваются, они или объединяются вместе, обобществляя свои оболочки, или вновь расходятся после перераспределения электронов. Число электронов на внешней оболочке и определяет химическую активность элемента.

С помощью квантовой теории удалось построить также более совершенные теории твердого тела, электрической проводимости, термоэлектрических явлений и т.д. Она дала основания для построения теории радиоактивного распада, а в дальнейшем стала базой для ядерной физики.

Вслед за основополагающими работами Шрёдингера по волновой механике были предприняты первые попытки релятивистского обобщения квантово-механических закономерностей, и уже в 1928 г. П. Дирак заложил основы релятивистской квантовой механики.

 

 

 

 

 

1.4 Проблема интерпретации квантовой механики. Принцип дополнительности

 

Созданный группой физиков в 1925—1927 гг. формальный математический аппарат квантовой механики убедительно продемонстрировал свои широкие возможности по количественному охвату значительного эмпирического материала; не оставалось сомнений, что квантовая механика пригодна для описания определенного круга явлений. Вместе с тем исключительная абстрактность квантово-механических формализмов, значительные отличия от классической механики (замена кинематических и динамических переменных абстрактными символами некоммутативной алгебры, отсутствие понятия  электронной  орбиты,  необходимость  интерпретации формализмов и др.) рождали ощущение незавершенности, неполноты новой теории. В результате возникло мнение о необходимости ее завершения.

Возникла дискуссия о том, каким путем это нужно делать. А. Эйнштейн и ряд физиков считали, что квантово-механическое описание физической реальности существенно неполно. Иначе говоря, созданная теория не является фундаментальной теорией, а лишь промежуточной ступенью по отношению к ней, поэтому ее необходимо дополнить принципиально новыми постулатами и понятиями, т.е. дорабатывать ту часть оснований новой теории, которая связана с ее принципами.

Другие физики (Н. Бор, В. Гейзенберг, М. Борн и др.) считали, что новая теория является фундаментальной и дает полное описание физической реальности, а «прояснить положение вещей можно было здесь только путем более глубокого исследования проблемы наблюдений в атомной физике» *. Иначе говоря, Бор и его единомышленники полагали, что «доработку» квантовой механики следует вести по линии уточнения той части ее оснований, которые связаны не с принципами теории, а с ее методологическими установками, по линии интерпретации созданного математического формализма. Разработка методологических установок квантовой механики, являвшаяся важнейшим звеном в интерпретации этой теории, продолжалась вплоть до конца 40-х гг. Завершение выработки этой интерпретации означало и завершение научной революции в физике, начавшейся в конце XIX в.

Невозможность провести резкую границу между объектом и прибором в квантовой физике выдвигает две задачи: 1)каким образом можно отличить знания об объекте от знаний о приборе; 2) каким образом, различив их, связать в единую картину, теорию объекта.

Вследствие того что сведения о микрообъекте, о его характеристиках получают в результате его взаимодействия с классическим прибором (макрообъёктом), микрообъект можно интерпретировать только в классических понятиях, т.е. использовать классические представления о волне и частице. Мы как бы вынуждены говорить на классическом языке, хотя с его помощью нельзя выразить все особенности микрообъекта, который не является классическим. Поэтому первая задача разрешается введением требования описывать поведение прибора на языке классической физики, а принципиально статистическое поведение микрочастиц — на языке квантово-механических формализмов. Вторая задача разрешается с помощью принципа дополнительности: волновое и корпускулярное описания микропроцессов не исключают и не заменяют друг друга, а взаимно дополняют друг друга. При одном представлении микрообъекта используется причинное описание соответствующих процессов, в другом случае — пространственно-временное. Единая картина объекта синтезирует эти два описания.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЗАКЛЮЧЕНИЕ

 

В основе современной квантово-полевой картины мира лежит новая физическая теория — квантовая механика, описывающая состояние и движение микрообъектов материального мира.

Квантовой механикой называют теорию, устанавливающую способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми опытным путем.

Таким образом, в квантовой механике сформировано представление о целостном, неразложимом характере мира, о не сведении его к отдельным элементам. Этот результат, имеющий глубокое мировоззренческое значение, является едва ли не самой удивительной страницей в истории физики и имеет далеко идущие перспективы по развитию телепортационных способов передачи информации. XXI век, по всей видимости, станет веком квантовой телепортации.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 

1.            Концепции современного естествознания: Под ред. профессора С.И. Самыгина. Серия «Учебники и учебные пособия» — 4-е изд., перераб. и доп. - Ростов н/Д: «Феникс», 2003

Информация о работе Возникновение и развитие квантовой физики