Автор: Пользователь скрыл имя, 06 Сентября 2011 в 13:30, курсовая работа
Сильное влияние закрутки на инертные и реагирующие течения хорошо известно и изучается на протяжении многих лет. Когда эффект закрутки оказывается полезным, конструктор старается создать закрутку, наиболее подходящую для решения его задач; если же подобные эффекты нежелательны, конструктор предпринимает усилия для регулирования или устранения закрутки. Закрученные течения имеют широкий диапазон приложений.
1. Характеристики закрученных потоков 3-8
2. Формирование закрученных течений 9-13
3. Топки, горелки и циклоны 14-19
4. Изменение структуры потока с увеличением закрутки 20-22
5. Структура рециркуляционной зоны 23-25
6. Вихревые горелки, прецессирующее вихревое ядро
в потоке с горением 26-27
7. Горение в закрученном потоке 28-31
8. Проектирование вихревых горелок 32-33
9. Список используемой литературы
7.ГОРЕНИЕ В ЗАКРУЧЕННОМ ПОТОКЕ
Общий вид распределений температуры в пламени вихревой горелки представлен на рис. 4.43 а и 4.436. Распределение температуры по радиусу показано на рис. 4.43а
Рис.4.43а.Радиальное
распределение температуры в
факеле вихревой горелки.
Рис. 4.436. Изменение максимальной температуры вдоль оси горелки.
Максимум температуры расположен вблизи выходного сечения, непосредственно за границей зоны обратных токов. Распределение температуры в зоне обратных токов практически равномерное, что свидетельствует о реализации в этой области «реактора интенсивного смешения». Вблизи зоны реакции в пламени обнаруживаются пики в распределении температуры и ее градиента. Представленное на рис. 4.436 распределение максимальной температуры вдоль потока показывает, что максимум медленно нарастает к выходному сечению горелки, а за этим сечением наблюдается резкий спад, соответствующий выгоранию топлива. Проблема измерения параметров потока в вихревых горелках весьма сложна, и только в последнее время удалось выяснить возможности проведения измерений скорости, давления и интенсивности турбулентности в этих устройствах. Выполненные ранее с помощью термоанемометра и насадка полного давления измерения в изотермических потоках указывают на высокий уровень турбулентности. На основании этого считалось, что нельзя для определения характеристик турбулентности использовать методы, основанные на измерении пульсации давления, которые применимы только в слаботурбулизованных потоках (с интенсивностью турбулентности менее 30%). Однако, поскольку горение подавляет амплитуды возмущений в виде прецессии вихревого ядра на два порядка (в особенности при 5>0,5), ПВЯ не является определяющим элементом течения, и эффективный максимум турбулентных пульсации в некоторых горелках уменьшаетсяо и позволяет использовать методы, основанные на измерении пульсации давления . Спектральный анализ пульсации давления в вихревых горелках показывает, что осцилляции носят более случайный характер, чем в изотермическом потоке, а следовательно, при горении изменяется и природа процесса смешения. В изотермическом потоке доминируют пульсации скорости, имеющие довольно регулярный характера а при горении имеющие случайный, турбулентный характер только закруткой, но также и наличием диффузора с полууглом раскрытия 35°. Действительно, если выходная часть имеет цилиндрическую форму, то при такой интенсивности закрутки распад вихря только начинается и рециркуляционная зон только зарождается. Результаты показывают, в частности, что в реагирующих потоках в рециркуляционных областях течение существенно неизотропно. При горении интеграл от пульсации скорости, взятый по всему полю течения, значительно больше, чем в изотермическом потоке, что в определенном смысле подтверждает гипотезу о генерации турбулентности при наличии пламени.
Как показывают эти исследования, характеристики потоков с горением и без горения значительно различаются, в особенности это касается распределения продольной скорости, формы. поперечного размера и протяженности зоны обратных токов. В отличие от результатов, полученных в работах, здесь при горении протяженность и поперечный размер зоны обратных токов значительно возрастали, зона обратных токов простиралась вниз по потоку по крайней мере на расстояние, равное двум диаметрам выходного сечения. Интенсивность пульсации продольной составляющей скорости везде, за исключением области вблизи выходного сечения горелки, при горении уменьшалась. Высокий уровень пульсации продольной скорости наблюдался вблизи границы рециркуляционной зоны. здесь же проявлялась существенная анизотропия пульсации. Вообще, существенная разница интенсивностей пульсации продольной и окружной скоростей в потоках с горением и без горения наблюдается в большей части поля течения.
Измерения показывают, что имеется сильная перемежаемость внутри и вокруг рециркуляционной зоны, что свидетельствует о ее нестационарном характере. Проведены также измерения в слое смешения стесненного турбулентного диффузионного факела. Распределения продольной и окружной осредненных по времени скоростей, среднеквадратичных значений пульсации скорости, распределение плотности вероятности показывают, что осредненные и нестационарные характеристики поля течения существенно изменяются при вариации давления на выходе из камеры сгорания и закрутки воздуха на входе. Эти изменения заметно влияют на выбросы загрязняющих веществ. Обнаружен существенный вклад крупномасштабных пульсации в суммарное среднеквадратичное значение турбулентных пульсации скорости. Влияние крупномасштабных пульсации приводит к отличию случайного процесса от гауссова и к существенной анизотропии турбулентности в большей части начального участка. Отмеченное обстоятельство показывает, что модели турбулентности, основанные на гипотезе о локальном равновесии, неадекватно описывают физические процессы в потоке с горением
В
настоящее время для потоков
с горением, особенно для стесненных
потоков, имеется значительное количество
данных о зависимости величины потока
массы, вовлеченной в рецирку-
Сравнение границ зоны обратных токов при различных значениях параметра закрутки в потоке с горением предварительно перемешанных компонент приведено на рис. 4.4. При увеличении параметра закрутки от 0,7 до 1,25 увеличиваются как ширина, так и длина зоны. То же самое должно наблюдаться и в изотермическом потоке, т. е. с ростом параметра закрутки длина зоны обратных токов должна увеличиваться. Следует заметить, что за лопаточным завихрителем без втулки: зоны обратных токов длинные и узкие, и потому такие завихрители обычно не применяются. За кольцевым лопаточным завихрителем зона обратных токов при тех же параметрах закрутки значительно шире и короче. Для стабилизации пламени весьма желательно, чтобы зона обратных токов была короткой и компактной, поскольку в длинной зоне рециркуляция холодных продуктов сгорания приводит к уменьшению полноты сгорания и сужению пределов срыва пламени. На характеристики течения за вихревой горелкой, так же как на характеристики изотермического течения, влияет степень стеснения потока, причем определяющими здесь являются такие параметры, как отношение диаметра горелки к диаметру топки, коэффициент избытка воздуха и выходной диаметр топки. При достаточно высоких интенсивностях закрутки в потоке с горением, так же как и изотермическом потоке, образуется пристенная веерная струя, периферийная рециркуляционная зона исчезает и пламя прилипает к лицевой стенке камеры. Этот эффект должен иметь место при параметрах закрутки
S > 1.5, в то время как при S=1.25 еще существует периферийная рециркуляционная зона.
В топках с вихревой горелкой можно сжигать газовые отходы обладающие очень низкой теплотой сгорания: для этого необходимо топку облицевать огнеупорным материалом и хорошо теплоизолировать.
8.
ПРОЕКТИРОВАНИЕ ВИХРЕВЫХ
ГОРЕЛОК
Из изложенных выше материалов ясно, что пока невозможно сформулировать общие методы проектирования вихревых горелок различного назначения. Можно, однако, сформулировать следующие рекомендации в помощь проектировщикам:
1.
Для создания потока с
2.
Для закрутки потоков до
3.
Для создания потока с
4.
На горелку необходимо
S > 0,5: полуугол раскрытия диффузора от 20° до 35°;
S < 0,5: полуугол раскрытия диффузора от 20° до 25°;
длина надставки (для получения факела типа II) Lдифф = 0,5Dе.
Диффузор
на выходе существенно увеличивает
размеры приосевой
5.
Для получения факела типа I в
горелке с диффузорной
6.
Следует проявлять
7.
Горелки с тангенциальным
Влияние
вида топлива (уголь, нефть, синтетическое
топливо) на характеристики вихревой горелки
опять-таки трудно параметризовать, но
можно указать следующую основную закономерность:
длина факела возрастает при последовательном
переходе от газообразных топлив к легким
жидким топливам (бензин), от них к тяжелым
жидким топливам (мазут, некоторые синтетические
топлива) и, наконец, к распыленному углю.
Такая последовательность отражает уменьшение
испаряемости топлива. При сжигании распыленного
угля обычно необходимо использовать
в качестве носителя около 20 % подаваемого
воздуха. При сжигании мазута необходимо
для стабилизации пламени добавлять к
форсунке дисковый стабилизатор.
Л. Н. Сидельковский, В. Н. Юренев.
Д. М. Хазмалян, Я. А. Каган.
А. Гупта, Д. Лилли, Н. Сайред.