Автор: Пользователь скрыл имя, 10 Февраля 2013 в 19:43, реферат
Ультразвук - упругие волны высокой частоты, которым посвящены специальные разделы науки и техники. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 000 колебаний в секунду (Гц); колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 18 000 герц. Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно.
Возможна также диагностика гинекологических заболеваний: миомы и опухоли матки, кист и опухолей яичников.
Ультразвуковое исследование показано во всех случаях, если в брюшной полости пальпируется какое-то образование, особое значение имеет в распознавании злокачественных опухолей органов пищеварения. Легко диагностируются некоторые острые заболевания, требующие срочного хирургического вмешательства, такие как острый холецистит, острый панкреатит, тромбоз сосудов и др. Эхография практически всегда позволяет быстро выявить механическую природу желтухи и точно установить ее причину.
При исследовании сердца получают информацию об особенностях его строения и динамики сокращений, о врожденных и приобретенных пороках, поражениях миокарда, ишемической болезни, перикардитах и других заболеваниях сердечно-сосудистой системы.
Ультразвук применяется для оценки насосной, функции сердца, для контроля действия лекарственных препаратов, для изучения коронарного кровообращения и является таким же надежным методом бескровной диагностики, как электрокардиография и рентгенологическое исследование сердца.
Приборы импульсно-доплеровского
типа регистрируют скорость кровотока
в глубоко расположенных
Ультразвуковая диагностика
дает возможность визуально
Ультразвуковой метод прост и доступен, не имеет противопоказаний и может быть использован неоднократно, даже в течение дня, если этого требует состояние пациента. Полученные сведения дополняют данные компьютерной томографии, рентгеновской и радиоизотопной диагностики, должны быть сопоставлены с клиническим состоянием пациента.
Допплерография
Увеличенный компьютером Транскраниальный допплер.
Методика основана на
использовании эффекта
Потоковая спектральная допплерография (ПСД)
Предназначена для оценки
кровотока в относительно крупных
сосудах и камерах сердца. Основным
видом диагностической
Непрерывная (постоянноволновая) ПСД
Методика основана на
постоянном излучении и постоянном
приеме отраженных ультразвуковых волн.
При этом величина сдвига частоты
отраженного сигнала
Импульсная ПСД
Методика базируется на периодическом излучении серий импульсов ультразвуковых волн, которые, отразившись от эритроцитов, последовательно воспринимаются тем же датчиком. В этом режиме фиксируются сигналы, отраженные только с определенного расстояния от датчика, которые устанавливаются по усмотрению врача. Место исследования кровотока называют контрольным объёмом. Достоинства: возможность оценки кровотока в любой заданной точке.
Цветовое допплеровское картирование (ЦДК)
Основано на кодировании в цвете значения допплеровского сдвига излучаемой частоты. Методика обеспечивает прямую визуализацию потоков крови в сердце и в относительно крупных сосудах. Красный цвет соответствует потоку, идущему в сторону датчика, синий — от датчика. Темные оттенки этих цветов соответствуют низким скоростям, светлые оттенки — высоким. Недостаток: невозможность получения изображения мелких кровеносных сосудов с маленькой скоростью кровотока. Достоинства: позволяет оценивать как морфологическое состояние сосудов, так и состояние кровотока по ним.
Энергетическая допплерография (ЭД)
Методика основана на анализе амплитуд всех эхосигналов допплеровского спектра, отражающих плотность эритроцитов в заданном объёме. Оттенки цвета (от темно-оранжевого к жёлтому) несут сведения об интенсивности эхосигнала. Диагностическое значение энергетической допплерографии заключается в возможности оценки васкуляризации органов и патологических участков. Недостаток: невозможно судить о направлении, характере и скорости кровотока. Достоинства: отображение получают все сосуды, независимо от их хода относительно ультразвукового луча, в том числе кровеносные сосуды очень небольшого диаметра и с незначительной скоростью кровотока. Полученные при ЭД данные выводятся на монитор прибора в виде цветного изображения исследуемого органа либо участка мягких тканей, при этом оттенки цвета (как правило, от темно-оранжевого к желтому) несут информацию об интенсивности эхосигнала, и, соответственно, качестве кровоснабжения.
Современные ультразвуковые аппараты позволяют легко комбинировать вышеперечисленные методы.
Изолированная ультразвуковая допплерография в настоящее время используется редко. Чаще применяется так называемое дуплексное сканирование (ультразвуковая дуплексная допплерография), представляющая собой сочетание допплеровского ультразвукового сканирования (в ПСД либо ЭД режиме) с традиционным ультразвуковым исследованием. Традиционный режим УЗИ, так называемый B-режим, даёт информацию в виде двухмерных черно-белых изображений анатомических структур в масштабе реального времени. Его применение при допплерографии позволяет более точно локализовать исследуемый сосуд, и получить информацию о строении его стенки, величине просвета и т.д.
Комбинированные варианты
Остальные варианты допплерографии сосудов принципиальных отличий от описанных выше не несут, и являются дополнениями, основанными на компьютерной обработке полученных при исследовании данных:
цветовое допплеровское картирование (цветовая допплерография)
триплексное сканирование
трехмерная допплерография
Цветовое картирование
позволяет вывести информацию о
характеристиках кровотока в
более удобном для
Триплексным сканированием часто называют дуплексную допплерометрию с цветовым картированием.
Наконец, трехмерная допплерография
позволяет с помощью
Ультразвуковая допплерография активно применяется во многих областях медицины: сосудистой хирургии и флебологии, кардиологии и кардиохирургии, нейрохирургии и т.д.
Трёхмерное допплеровское картирование и трёхмерная ЭД
Методики, дающие возможность наблюдать объемную картину пространственного расположения кровеносных сосудов в режиме реального времени в любом ракурсе, что позволяет с высокой точностью оценивать их соотношение с различными анатомическими структурами и патологическими процессами, в том числе со злокачественными опухолями. В этом режиме используется возможность запоминания нескольких кадров изображения.
После включения режима исследователь перемещает датчик или изменяет его угловое положение, не нарушая контакта датчика с телом пациента. При этом записываются серии двухмерных эхограмм с небольшим шагом (малое расстояние между плоскостями сечения). На основе полученных кадров система реконструирует псевдотрёхмерное[неизвестный термин] изображение только цветной части изображения, характеризующее кровоток в сосудах. Поскольку при этом не строится реальная трехмерная модель объекта, при попытке изменения угла обзора появляются значительные геометрические искажения из-за того, что трудно обеспечить равномерное перемещение датчика вручную с нужной скоростью при регистрации информации. Метод позволяющий получать трёхмерные изображения без искажений, называется методом трёхмерной эхографии (3D).
Использованная литература
1. Хилл К.
Применение ультразвука в
2. Ремизов
А.Н. Медицинская и
3.Крылов Н.П. и Рокитянский В.И. Ультразвук и его применение - 1958г
Информация о работе Ультразвуковые методы исследования и их применение в медицине