Автор: Пользователь скрыл имя, 25 Января 2011 в 17:35, контрольная работа
Из классической термодинамики известно, что изолированные термодинамические системы в соответствии со вторым началом термодинамики для необратимых процессов энтропия системы S возрастает до тех пор, пока не достигнет своего максимального значения в состоянии термодинамического равновесия. Возрастание энтропии сопровождается потерей информации о системе.
Введение…………………………………………………………………3
1. Закрытые и открытые термодинамические системы………………4
2. Первое начало термодинамики……………………………………...6
3. Второе начало термодинамики………………………………………8
3.1 Обратимые и необратимые процессы………………………14
3.2 Энтропия……………………………………………………...15
4.Третье начало термодинамики……………………………………….20
Заключение……………………………………………………………...22
Список литературы……………………………………………………..23
d S = de S + di S (1.7)
Приращение энтропии di S обусловленное изменением внутри системы, никогда не имеет отрицательное значение. Величина di S = 0, только тогда, когда система претерпевает обратимые изменения, но она всегда положительна, если в системе идут такие же необратимые процессы.
Таким образом:
di S = 0 (1.8)
(обратимые процессы);
di S > 0 (1.9)
(необратимые процессы).
Для изолированной системы поток энтропии равен нулю и выражения (1.8) и (1.9) сводятся к следующему виду:
d S = di S > 0 (1.10)
(изолированная система).
Для изолированной системы это соотношение равноценно классической формулировке, что энтропия никогда не может уменьшаться, так что в этом случае свойства энтропийной функции дают критерий, позволяющий обнаружить наличие необратимых процессов. Подобные критерии существуют и для некоторых других частных случаев.
Предположим, что система, которую мы будем обозначать символом 1, находится внутри системы 2 большего размера и что общая система, состоящая системы 1 и 2, является изолированной.
Классическая формулировка второго закона термодинамики тогда имеет вид:
d
S = d S1 + d S2 ³ 0 (1.11)
Прилагая
уравнения (1.8) и (1.9) в отдельности каждой
части этого выражения, постулирует, что:
di
S1 ³ 0 , di S2 ³ 0
Ситуация при которой di S1 > 0 и di S2 < 0 , а d( S1 + S2 )>0, физически неосуществима. Поэтому можно утверждать, что уменьшение энтропии в отдельной части системы, компенсируемое достаточным возрастанием энтропии в другой части системы, является запрещенным процессом. Из такой формулировки вытекает, что в любом макроскопическом участке системы приращение энтропии, обусловленное течением необратимых процессов, является положительным. Под понятием «макроскопический участок» системы подразумевается любой участок системы, в котором содержится достаточное большое число молекул, чтобы можно было пренебречь микроскопическими флуктуациями. Взаимодействие необратимых процессов возможно лишь тогда, когда эти процессы происходят в тех же самых участках системы.
Такую
формулировку второго закона можно
было бы назвать «локальной»
Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это и есть наиболее простое состояние системы, или термодинамическое равновесие, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно хаосу.
Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии.
Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:
Sобр = Qобр / Т
Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:
Sизол ≥ 0
Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка.
В действительности принципы существования и возрастания энтропии ничего общего не имеют. Физическое содержание: принцип существования энтропии характеризует термодинамические свойства систем, а принцип возрастания энтропии – наиболее вероятное течение реальных процессов. Математическое выражение принципа существования энтропии – равенство, а принципа возрастания – неравенство. Области применения: принцип существования энтропии и вытекающие из него следствия используют для изучения физических свойств веществ, а принцип возрастания энтропии – для суждения о наиболее вероятном течении физических явлений. Философское значение этих принципов также различно.
В связи с этим принципы существования и возрастания энтропии рассматриваются раздельно и математические выражения их для любых тел получаются на базе различных постулатов.
Вывод о существовании абсолютной температуры T и энтропии S как термодинамических функций состояния любых тел и систем составляет основное содержание второго закона термодинамики и распространяется на любые процессы – обратимые и необратимые.
Примечание:
Рассмотрим систему из двух контактирующих тел с разными температурами. Тепло пойдет от тела с большей температурой к телу с меньшей, до тех пор, пока температуры обоих тел не выровняются. При этом от одного тела к другому будет передано определенное количество тепла Q. Но энтропия при этом у первого тела уменьшится на меньшую величину, чем она увеличится у второго тела, которой принимает теплоту, так как по определению, S=Q/T (температура в знаменателе!). То есть, в результате этого самопроизвольного процесса энтропия системы из двух тел станет больше суммы энтропий этих тел до начала процесса. Иначе говоря, самопроизвольный процесс передачи тепла от тела с высокой температурой к телу с более низкой температурой привел к тому, что энтропия системы из этих двух тел увеличилась.
Заметим, что рассматривая эту систему из двух тел, подразумевалось, что внешнего теплопритока или теплооттока из нее нет – то есть считали ее изолированной. Отсюда еще одна формулировка второго закона термодинамики: энтропия изолированной системы стремится к максимуму – так как самопроизвольные процессы передачи тепла всегда будут происходить, пока есть перепады температур.
А что будет, если эта же система из двух тел будет неизолирована, и, допустим, в нее поступает тепло? Ее энтропия будет увеличиваться еще больше, так как при получении телом тепла энтропия его увеличивается (S=Q/T).
Но для простоты формулировки этот момент обычно не упоминают и поэтому формулируют второй закон термодинамики именно для изолированных систем. Хотя, как видно, он действует точно также и для открытых систем в случае поступления в них тепла.
Эволюционисты
же уперлись в общепринятую формулировку
второго закона термодинамики для
изолированных систем, утверждая, что
если система открыта, то второй закон
термодинамики не действует! А истина
проста: для открытой системы с подведением
тепла, энтропия растет даже быстрее, чем
для изолированной!
4.
ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ.
Открытие
третьего начала термодинамики связано
с нахождением химического
В результате этих исследований и было сформулировано третье начало термодинамики: по мере приближения температуры к 0 К энтропия всякой равновесной системы при изотермических процессах перестает зависеть от каких-либо термодинамических параметров состояния и в пределе (Т = 0 К) принимает одну и туже для всех систем универсальную постоянную величину, которую можно принять равной нулю.
Общность этого утверждения состоит в том , что , во-первых , оно относится к любой равновесной системе и , во-вторых , что при Т стремящемуся к 0 К энтропия не зависит от значения любого параметра системы. Таким образом по третьему началу, lin [ S (T,X2) - S (T,X1) ] = 0 (1.12) или lim [ dS/dX ]T = 0 при Т ® 0 (1.13)
где
Х - любой термодинамический
Предельно
значение энтропии, поскольку оно одно
и тоже для всех систем, не имеет никакого
физического смысла и поэтому полагается
равным нулю (постулат Планка). Как показывает
статическое рассмотрение этого вопроса,
энтропия по своему существу определена
с точностью до некоторой постоянной (подобно,
например, электростатическому потенциалу
системы зарядов в какой либо точке поля).
Таким образом, нет смысла вводить некую
«абсолютную энтропию», как это делал
Планк и некоторые другие ученые.
ЗАКЛЮЧЕНИЕ
Мы видели, что необратимость времени тесно связана с неустойчивостями в открытых системах. И.Р. Пригожин определяет два времени. Одно - динамическое, позволяющее задать описание движения точки в классической механике или изменение волновой функции в квантовой механике. Другое время - новое внутренние время, которое существует только для неустойчивых динамических систем. Оно характеризует состояние системы, связанное с энтропией.
Процессы биологического или общественного развития не имеют конечного состояния. Эти процессы неограниченны. Здесь, с одной стороны, как мы видели, нет какого-либо противоречия со вторым началом термодинамики, а с другой стороны - четко виден поступательный характер развития (прогресса) в открытой системе. Развитие связано, вообще говоря, с углублением неравновесности, а значит, в принципе с усовершенствованием структуры. Однако с усложнением структуры возрастает число и глубина неустойчивостей, вероятность бифуркации.
Изученные в последние годы простейшие нелинейные среды обладают сложными интересными свойствами. Структуры в таких средах могут развиваться независимо и быть локализованы, могут размножаться и взаимодействовать. Эти модели могут оказаться полезными при изучении широкого круга явлений.
Известно,
что имеется некоторая
Список
литературы
1. Базаров И.П. «Термодинамика». - М.: Высшая школа, 1991 г.
2.
Гленсдорф П., Пригожин И. Термодинамическая
теория структуры,
3.
Карери Д. Порядок и
4. Николис Г., Пригожин И. Познание сложного. - М.: Мир, 1990 г.
5.
Пригожин И. Введение в
6. Пригожин И. От существующего к возникающему. - М.: Наука, 1985 г.
7. Шелепин Л.А. В дали от равновесия. - М.: Знание, 1987 г.